References

  1. D.R. Lloyd, K.E. Kinzer, H.S. Tseng, Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation, J. Membr. Sci., 52 (1990) 239–261.
  2. D.R. Lloyd, S.S. Kim, K.E. Kinzer, Microporous membrane formation via thermally-induced phase separation. II. Liquid–liquid phase separation, J. Membr. Sci., 64 (1991) 1–11.
  3. S.S. Kim, D.R. Lloyd, Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes, J. Membr. Sci., 64 (1991) 13–29.
  4. T.H. Xiao, P. Wang, X. Yang, X. Cai, J. Lu, Fabrication and characterization of novel asymmetric polyvinylidene fluoride (PVDF) membranes by the nonsolvent thermally induced phase separation (NTIPS) method for membrane distillation applications, J. Membr. Sci., 489 (2015) 160–174.
  5. Q.Y. Wu, L.S. Wan, Z.K. Xu, Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation, J. Membr. Sci., 409 (2012) 355–364.
  6. H.Q. Liang, Q.Y. Wu, L.S. Wan, X.J. Huang, Z.K. Xu, Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent, J. Membr. Sci., 446 (2013) 482–491.
  7. Z.L. Cui, N.T. Hassankiadeh, S.Y. Lee, Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation, J. Membr. Sci., 444 (2013) 223–236.
  8. H. Matsuyama, M. Yuasa, Y. Kitamura, Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation, J. Membr. Sci., 179 (2000) 91–100.
  9. M.H. Gu, J. Zhang, X.L. Wang, H. Tao, L. Ge, Formation of poly(vinylidene fluoride) (PVDF) membranes via thermally induced phase separation, Desalination, 192 (2006) 160–167.
  10. L.S. Wu, J.F. Sun, Structure and properties of PVDF membrane with PES-C addition via thermally induced phase separation process, Appl. Surf. Sci., 322 (2014) 101–110.
  11. N. Han, J.C. Xiong, S.M. Chen, Structure and properties of poly (acrylonitrile-co-methyl acrylate) membranes prepared via thermally induced phase separation, J. Appl. Polym. Sci., 133 (2016) 1–8.
  12. H.Q. Liang, K.J. Ji, L.Y. Zha, Polymer membranes with vertically- oriented pores constructed by 2D freezing at ambient temperature, ACS Appl. Mater. Interfaces, 8 (2016) 14174–14181.
  13. N.N. Li, C.F. Xiao, S.M. Mei, S.J. Zhang, The multi-pore-structure of polymer–silicon hollow fiber membranes fabricated via thermally induced phase separation combining with stretching, Desalination, 274 (2011) 284–291.
  14. M.H. Shinde, S.S. Kulkarni, D.A. Musale, Improvement of the water purification capability of poly (acrylonitrile) ultrafiltration membranes, J. Membr. Sci., 162 (1999) 9–22.
  15. D.A. Musale, S.S. Kulkarni, Relative rates of protein transmission through poly (acrylonitrile) based ultrafiltration membranes, J. Membr. Sci., 136 (1997) 13–23.
  16. S. Azari, M. Karimi, M.H. Kish, Structural properties of the poly(acrylonitrile) membrane prepared with different cast thicknesses, Ind. Eng. Chemres., 49 (2010) 2442–2448.
  17. Z.G. Wang, L.S. Wan, Z.K. Xu, Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview, J. Membr. Sci., 304 (2007) 8–23.
  18. D. Pal, S. Neogi, S. De, Improved antifouling characteristics of acrylonitrile co-polymer membrane by low temperature pulsed ammonia plasma in the treatment of oil–water emulsion, Vacuum, 131 (2016) 293–304.
  19. F.Q. Nie, Z.K. Xu, L.S. Wan, Acrylonitrile-based copolymers containing reactive groups: synthesis and preparation of ultrafiltration membranes, J. Membr. Sci., 230 (2004) 1–11.
  20. P. Ye, Z.K. Xu, Z.G. Wang, Comparison of hydrolytic activities in aqueous and organic media for lipases immobilized on poly (acrylonitrile-co-maleic acid) ultrafiltration hollow fiber membrane, J. Mol. Catal. B: Enzym., 32 (2005) 115–121.
  21. C.H. Tsou, Q.F. An, S.C. Lo, Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration, J. Membr. Sci., 477 (2015) 93–100.
  22. Y. Du, Y. Lv, W.Z. Qiu, Nanofiltration membranes with narrowed pore size distribution via pore wall modification, Chem. Commun., 52 (2016) 8589–8592.
  23. Q. Sun, Y. Su, X. Ma, Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer, J. Membr. Sci., 285 (2006) 299– 305.
  24. Q.Y. Wu, B.T. Liu, M. Li, L.S. Wan, Z.K. Xu, Polyacrylonitrile membranes via thermally induced phase separation: Effects of polyethylene glycol with different molecular weights, J. Membr. Sci., 437 (2013) 227–236.
  25. N. Han, X.X. Zhang, Fabrication, structures, and properties of acrylonitrile/methyl acrylate copolymers and copolymers containing microencapsulated phase change materials, J. Appl. Polym. Sci., 103 (2007) 2776–2781.
  26. N. Han, X.X. Zhang, W.Y. Yu, Effects of copolymerization temperatures on structure and properties of melt-spinnable acrylonitrile-methyl acrylate copolymers and fibers, Macromol. Res., 18 (2010) 1060–1069.
  27. J.A. Ronner, S.G. Wassink, C.A. Smolders, Inversigation of liquid-liquid demixing and aggregate formation in a membrane forming system by means of pulse-induced critical scattering (PICS), J. Membr. Sci., 42 (1989) 27–36.
  28. J. Brandrup, E.H. Immergut, E.A. Grulke, Polymer Handbook, Wiley, New York, NY, 1999.
  29. R.G. Miller, C.Q. Bowles, C.C. Chappelow, Application of solubility parameter theory to dentin-bonding systems and adhesive strength correlations, J. Biomed. Mater. Res., 41 (1998) 237–243.
  30. M.J. He, W. Chen, X.X. Dong, Polymer physics, Fudan University Publishers, Shanghai, China, 1990.
  31. A. Bottino, G. Capannelli, S. Munari, Solubility parameters of poly (vinylidene fluoride), J. Polym. Sci. B: Polym. Phys., 26 (1988) 785–794.
  32. C.K. Kjellander, T.B. Nielsen, A. Ghanbari-Siahkali, ESC resistance of commercial grade polycarbonates during exposure to butter and related chemicals, Polym. Degrad. Stab., 93 (2008) 1486–1495.
  33. S. Yang, L. Zhongzhou, Preparation and characterization of polyacrylonitrile ultrafiltration membranes, J. Membr. Sci., 222 (2003) 87–98.
  34. A.I. Gopalan, P. Santhosh, K.M. Manesh, Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries, J. Membr. Sci., 325 (2008) 683–690.
  35. J. Feng, Z.L. Xu, H. Yang, Hydrophilic microporous PES membranes prepared by PES/PEG/DMAc casting solutions, J. Appl. Polym. Sci., 107 (2008) 4100–4108.
  36. S.W. Song, J.M. Torkelson, Coarsening effects on microstructure formation in isopycnic polymer solutions and membranes produced via thermally induced phase separation, Macromol., 27 (1994) 6389–6397.
  37. K.S. McGuire, A. Laxminarayan, D.R. Lloyd, Kinetics of droplet growth in liquid–liquid phase separation of polymer–diluent systems: experimental results, Polymer, 36 (1995) 4951–4960.
  38. H. Matsuyama, S. Berghmans, D.R. Lloyd, Formation of hydrophilic microporous membranes via thermally induced phase separation, J. Membr. Sci., 142 (1998) 213–224.
  39. G.L. Ji, L.P. Zhu, B.K. Zhu, Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture, J. Membr. Sci., 319 (2008) 264–270.
  40. L. Wang, D. Huang, X. Wang, Preparation of PVDF membranes via the low-temperature TIPS method with diluent mixtures: The role of coagulation conditions and cooling rate, Desalination, 361 (2015) 25–37.
  41. C.Y. Liu, C.J. He, Preparation and characterization of polyacrylonitrile membranes with high strength via thermally induced phase separation process, Mater. Sci. Forum. Trans. Tech. Publications, 789 (2014) 205–208.
  42. N. Han, S.M. Chen, G. Chen, Preparation of poly (acrylonitrile-methacrylate) membrane via thermally induced phase separation: effects of MA with different feeding molar ratios, Desal. Water Treat., 57 (2016) 27531–27547.