References

  1. P. Bansal, N. Bhullar, D. Sud, Studies on photodegradation of malachite green using TiO2/ZnO photocatalyst, Desal. Wat. Treat., 12 (2012) 108–113.
  2. X. Liu, T. Lv, Y. Liu, L. Pan, Z. Sun, TiO2–Au composite for efficient UV photocatalytic reduction of Cr(VI), Desal. Wat. Treat., 51 (2013) 3889–3895.
  3. Q. Han, Y. Wang, H. Yan, B. Gao, D. Ma, S. Sun, J. Ling, Y. Chu, Photocatalysis of THM precursors in reclaimed water: the application of TiO2 in UV irradiation, Desal. Wat. Treat., 57 (2016) 9136–9147.
  4. A. Mezni, N.B. Saber, M.M. Ibrahim, M. El-Kemary, A. Aldalbahi, P. Feng, L. Samia Smiri, T. Altalhi, Facile synthesis of highly thermally stable TiO2 photocatalysts, New J. Chem., 41 (2017) 5021–5027.
  5. S. Ray, J.A. Lalman, Fabrication and characterization of an immobilized titanium dioxide (TiO2) nanofiber photocatalyst, Mater. Today, Proc., 3 (2016) 1582–1591.
  6. G. Tian, H. Fu, L. Jing, B. Xin, K. Pan, Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity, J. Phys. Chem. C, 112 (2008) 3083–3089.
  7. Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng, Y. Cao, The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity, J. Phys. Chem. C, 118 (2014) 12727.
  8. J.G. Lu, P. Chang, Z. Fan, Quasi-one-dimensional metal oxide materials – synthesis, properties and applications, Mater. Sci. Eng., R, 52 (2006) 49–91.
  9. X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, Z. Fan, Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts, ACS Appl. Mater. Interfaces, 4 (2012) 3944–3950.
  10. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus Jr., Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal., 2 (2012) 949–956.
  11. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano Lett., 11 (2011) 3026–3033.
  12. X. Kang, S. Chen, Photocatalytic reduction of methylene blue by TiO2 nanotube arrays: effects of TiO2 crystalline phase, J. Mater. Sci., 45 (2010) 2696–2702.
  13. M. Fathy, H. Hamad, A. El Hady Kashyout, Influence of calcination temperatures on the formation of anatase TiO2 nano rods with a polyol-mediated solvothermal method, RSC Adv., 6 (2016) 7310–7316.
  14. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir, 14 (1998) 3160–3163.
  15. Y. Tang, Y. Zhang, J. Deng, J. Wei, H.L. Tam, B.K. Chandran, Z. Dong, Z. Chen, X. Chen, Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries, Adv. Mater., 26 (2014) 6111–6118.
  16. D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, J. Mater. Chem., 14 (2004) 3370–3378.
  17. B.-M. Wen, C.-Y. Liu, Y. Liu, Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires, New J. Chem., 29 (2005) 969–971.
  18. S. Hoang, S. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Visible light driven photoelectrochemical water oxidation on nitrogenmodified TiO2 nanowires, Nano Lett., 12 (2012) 26–32.
  19. P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications, Angew. Chem. Int. Ed., 50 (2011) 2904–2939.
  20. Y.V. Kolen’ko, K.A. Kovnir, A.I. Gavrilov, Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide, J. Phys. Chem. B, 110 (2006) 4030–4038.
  21. J.-N. Nian, H. Teng, Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor, J. Phys. Chem. B, 110 (2006) 4193–4198.
  22. Z. Yang, B. Wang, H. Cui, H. An, Y. Pan, J. Zhai, Synthesis of crystal-controlled TiO2 nanorods by a hydrothermal method: rutile and brookite as highly active photocatalysts, J. Phys. Chem. C, 119 (2015) 16905–16912.
  23. H.-L. Kuo, C.-Y. Kuo, C.-H. Liu, J.-H. Chao, C.-H. Lin, A highly active bi-crystalline photocatalyst consisting of TiO2 (B) nanotube and anatase particle for producing H2 gas from neat ethanol, Catal. Lett., 113 (2007) 7.
  24. S. Ray, J.A. Lalman, N. Biswas, Using the Box-Benkhen technique to statistically model phenol photocatalytic degradation by titanium dioxide nanoparticles, Chem. Eng. J., 150 (2009) 15–24.
  25. D. Yang, Y. Sun, Z. Tong, Y. Tian, Y. Li, Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion, J. Phys. Chem. C, 119 (2015) 5827–5835.
  26. D. Xu, B. Cheng, S. Cao, J. Yu, Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation, Appl. Catal., B, 164 (2015) 380–388.
  27. M. Nasr, R. Viter, C. Eid, R. Habchi, P. Miele, M. Bechelany, Enhanced photocatalytic performance of novel electrospun BN/TiO2 composite nanofibers, New J. Chem., 41 (2016) 81–89.
  28. H. Cheng, J. Ma, Z. Zhao, L. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chem. Mater., 7 (1995) 663–671.
  29. H. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, J. Phys. Chem. B, 104 (2000) 3481–3487.
  30. D. Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotechnology, 19 (2008) 145605.
  31. T.P. Feist, P.K. Davies, The soft chemical synthesis of TiO2 (B) from layered titanates, J. Solid State Chem., 101 (1992) 275–295.
  32. M.C. Hidalgo, M. Maicu, J.A. Navío, G. Colón, Photocatalytic properties of surface modified platinised TiO2: effects of particle size and structural composition, Catal. Today, 129 (2007) 43–49.
  33. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World J. Nano Sci. Eng., 02 (2012) 154–160.
  34. H. Luo, C. Wang, Y. Yan, Synthesis of mesostructured titania with controlled crystalline framework, Chem. Mater., 15 (2003) 3841–3846.
  35. R. Lopez, R. Gomez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study, J. Sol-Gel Sci. Technol., 61 (2012) 1–7.
  36. J. Tao, T. Luttrell, M. Batzill, A two-dimensional phase of TiO2 with a reduced bandgap, Nat. Chem., 3 (2011) 296–300.
  37. W. Fan, Q. Lai, Q. Zhang, Y. Wang, Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution, J. Phys. Chem. C, 115 (2011) 10694–10701.
  38. U. Diebold, Photocatalysts: closing the gap, Nat. Chem., 3 (2011) 271–272.
  39. L. Yang, M. Gong, X. Jiang, D. Yin, X. Qin, B. Zhao, W. Ruan, Investigation on SERS of different phase structure TiO2 nanoparticles, J. Raman Spectrosc., 46 (2015) 287–292.
  40. S. Hoang, S.P. Berglund, N.T. Hahn, A.J. Bard, C.B. Mullins, Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N, J. Am. Chem. Soc., 134 (2012) 3659–3662.
  41. L. Zhang, W. Zheng, H. Jiu, W. Zhu, G. Qi, Preparation of the anatase/TiO2(B) TiO2 by self-assembly process and the high photodegradable performance on RhB, Ceram. Int., 42 (2016) 12726–12734.
  42. S.S. Veeravalli, S.R. Chaganti, J.A. Lalman, D.D. Heath, Optimizing hydrogen production from a switchgrass steam exploded liquor using a mixed anaerobic culture in an upflow anaerobic sludge blanket reactor, Int. J. Hydrogen Energy, 39 (2014) 3160–3175.
  43. S.R. Shanmugam, S.R. Chaganti, J.A. Lalman, D.D. Heath, Statistical optimization of conditions for minimum H2 consumption in mixed anaerobic cultures: effect on homoacetogenesis and methanogenesis, Int. J. Hydrogen Energy, 39 (2014) 15433–15445.
  44. Z. Lai, M. Zhu, X. Yang, J. Wang, S. Li, Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture, Biotechnol. Biofuels, 7 (2014) 131–111.
  45. A. Reungsang, S. Pattra, S. Sittijunda, Optimization of key factors affecting methane production from acidic effluent coming from the sugarcane juice hydrogen fermentation process, Energies, 5 (2012) 4746–4757.
  46. M.A. Stephens, EDF statistics for goodness of fit and some comparisons, J. Am. Stat. Assoc., 69 (1974) 730.
  47. D.C. Montgomery, Design and Analysis of Experiments, John Wiley and Sons, Inc., Arizona State University, Arizona, 2017.