References

  1. K. Fent, A. Zenker, M. Rapp, Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland, Environ. Pollut., 158 (2010) 1817–1824.
  2. N. Serpone, D. Dondi, A. Albini, Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products, Inorg. Chim. Acta, 360 (2007) 794–802.
  3. C. Liao, K. Kannan, Widespread occurrence of benzophenonetype UV light filters in personal care products from China and the United States: an assessment of human exposure, Environ. Sci. Technol., 48 (2014) 4103–4109.
  4. M.M.P. Tsui, H.W. Leung, B.K.Y. Kwan, K.Y. Ng, N. Yamashita, S. Taniyasu, P.K.S. Lam, M.B. Murphy, Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan, J. Hazard. Mater., 292 (2015) 180–187.
  5. W. Li, Y. Ma, C. Guo, W. Hu, K. Liu, Y. Wang, T. Zhu, Occurrence and behavior of four of the most used sunscreen UV filters in a wastewater reclamation plant, Water Res., 41 (2007) 3506–3512.
  6. A. Sánchez Rodríguez, M. Rodrigo Sanz, J.R. Betancort Rodríguez, Occurrence of eight UV filters in beaches of Gran Canaria (Canary Islands). An approach to environmental risk assessment, Chemosphere, 131 (2015) 85–90.
  7. M.E. Balmer, H.R. Buser, M.D. Müller, T. Poiger, Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes, Environ. Sci. Technol., 39 (2005) 953–962.
  8. C.A. Downs, E. Kramarsky-Winter, R. Segal, J. Fauth, S. Knutson, O. Bronstein, F.R. Ciner, R. Jeger, Y. Lichtenfeld, C.M. Woodley, P. Pennington, K. Cadenas, A. Kushmaro, Y. Loya, Toxicopathological effects of the sunscreen UV filter, Oxybenzone (Benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin islands, Arch. Environ. Contam. Toxicol., 70 (2016) 265–288.
  9. N. Blüthgen, S. Zucchi, K. Fent, Effects of the UV filter benzophenone- 3 (oxybenzone) at low concentrations in zebrafish (Danio rerio), Toxicol. Appl. Pharmacol., 263 (2012) 184–194.
  10. R. Danovaro, L. Bongiorni, C. Corinaldesi, D. Giovannelli, E. Damiani, P. Astolfi, L. Greci, A. Pusceddu, Sunscreens cause coral bleaching by promoting viral infections, Environ. Health Perspect., 116 (2008) 441–447.
  11. C.O. Robichaud, A.E. Uyar, M.R. Darby, L.G. Zucker, M.R. Wiesner, Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment, Environ. Sci. Technol., 43 (2009) 4227–4233.
  12. M.A. Kiser, P. Westerhoff, T. Benn, Y. Wang, J. Pérez-Rivera, K. Hristovski, Titanium nanomaterial removal and release from wastewater treatment plants, Environ. Sci. Technol., 43 (2009) 6757–6763
  13. F. Chen, C. Huber, P. Schröder, Fate of the sunscreen compound oxybenzone in Cyperus alternifolius based hydroponic culture: uptake, biotransformation and phytotoxicity, Chemosphere, 182 (2017) 638–646.
  14. M.F. Serag, N. Kaji, C. Gaillard, Y. Okamoto, K. Terasaka, M. Jabasini, M. Tokeshi, H. Mizukami, A. Bianco, Y. Baba, Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells, ACS Nano, 5 (2011) 493–499.
  15. R. De La Torre-Roche, J. Hawthorne, Y. Deng, B. Xing, W. Cai, L.A. Newman, Q. Wang, X. Ma, H. Hamdi, J.C. White, Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants, Environ. Sci. Technol., 47 (2013) 12539–12547.
  16. X. Zhang, H. Sun, Z. Zhang, Q. Niu, Y. Chen, J.C. Crittenden, Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles, Chemosphere, 67 (2007) 160–166.
  17. D.L. Jacob, J.D. Borchardt, L. Navaratnam, M.L. Otte, A.N. Bezbaruah, Uptake and translocation of Ti from nanoparticles in crops and wetland plants, Int. J. Phytorem., 15 (2013) 142–153.
  18. K. Ganguly, S. Upadhyay, M. Irmler, S. Takenaka, K. Pukelsheim, J. Beckers, E. Hamelmann, H. Schulz, T. Stoeger, Pathway focused protein profiling indicates differential function for IL-1B, -18 and VEGF during initiation and resolution of lung inflammation evoked by carbon nanoparticle exposure in mice., Part. Fibre Toxicol., 6 (2009) 31.
  19. A. Stampfl, M. Maier, R. Radykewicz, P. Reitmeir, M. Göttlicher, R. Niessner, Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles, ACS Nano, 5 (2011) 5345–5353.
  20. Spirodela duckweed toxkit a simple and practical growth inhibition microbiotest with Spirodela polyrhiza bench protocol, Available at: http://www.ebpi-kits.com/images/spirodelastp. pdf (accessed October 4, 2017).
  21. OECD, Test No. 221: Lemna spp. Growth Inhibition Test, OECD Guidel. Test. Chem. Sect. 2. OECD Publishing, Paris, 2006, pp. 1–22.
  22. M. Obermeier, C.A. Schröder, B. Helmreich, P. Schröder, The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide, Environ. Sci. Pollut. Res., 22 (2015) 18495–18507.
  23. H.K. Lichtenthaler, C. Buschmann, Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy, Curr. Protoc. Food Anal. Chem., 1 (2001) F4.3.1-F4.3.8.
  24. A. Nepovím, R. Podlipná, P. Soudek, P. Schröder, T. Vaněk, Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase, Chemosphere, 57 (2004) 1007–1015.
  25. F. Chen, C. Huber, R. May, P. Schröder, Metabolism of oxybenzone in a hairy root culture: perspectives for phytoremediation of a widely used sunscreen agent, J. Hazard. Mater., 306 (2016) 230–236.
  26. A. San Miguel, P. Schröder, R. Harpaintner, T. Gaude, P. Ravanel, M. Raveton, Response of phase II detoxification enzymes in Phragmites australis plants exposed to organochlorines, Environ. Sci. Pollut. Res., 20 (2013) 3464–3471.
  27. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72 (1976) 248–254.
  28. P. Begum, R. Ikhtiari, B. Fugetsu, Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce, Carbon N. Y., 49 (2011) 3907–3919.
  29. H. Liu, C. Ma, G. Chen, J.C. White, Z. Wang, B. Xing, O.P. Dhankher, Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana (L.), ACS Sustainable Chem. Eng., 5 (2017) 3204–3213.
  30. C. Larue, G. Veronesi, A.-M. Flank, S. Surble, N. Herlin-Boime, M. Carrière, Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed, J. Toxicol. Environ. Health Part A, 75 (2012) 722–734.
  31. M.V. Khodakovskaya, B.-S. Kim, J.N. Kim, M. Alimohammadi, E. Dervishi, T. Mustafa, C.E. Cernigla, Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community, Small, 9 (2013) 115–123.
  32. M. Vithanage, M. Seneviratne, M. Ahmad, B. Sarkar, Y.S. Ok, Contrasting effects of engineered carbon nanotubes on plants: a review, Environ. Geochem. Health, 39 (2017) 1421–1439.
  33. G. Song, Y. Gao, H. Wu, W. Hou, C. Zhang, H. Ma, Physiological effect of anatase TiO2 nanoparticles on Lemna minor, Environ. Toxicol. Chem., 31 (2012) 2147–2152.
  34. R. Raliya, P. Biswas, J.C. Tarafdar, TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.), Biotechnol. Rep. (Amst.), 5 (2015) 22–26.
  35. F. Hong, F. Yang, C. Liu, Q. Gao, Z. Wan, F. Gu, C. Wu, Z. Ma, J. Zhou, P. Yang, Influences of nano-TiO2 on the chloroplast aging of spinach under light., Biol. Trace Elem. Res., 104 (2005) 249–60.
  36. X. Wang, F. Gao, L. Ma, J. Liu, S. Yin, P. Yang, F. Hong, Effects of nano-anatase on ribulose-1, 5-bisphosphate carboxylase/ oxygenase mRNA expression in spinach, Biol. Trace Elem. Res., 126 (2008) 280–289.
  37. A. Spengler, L. Wanninger, S. Pflugmacher, Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata, Aquat. Toxicol., 190 (2017) 32–39.
  38. R. Mittler, ROS are good, Trends Plant Sci., 22 (2017) 11–19.
  39. J. Zhao, C. Chen, W. Ma, Photocatalytic degradation of organic pollutants under visible light irradiation, Top. Catal., 35 (2005) 269–278.
  40. E. Pelizzetti, C. Minero, Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles, Electrochim. Acta, 38 (1993) 47–55.
  41. Y.S. Liu, G.G. Ying, A. Shareef, R.S. Kookana, Photostability of the UV filter benzophenone-3 and its effect on the photodegradation of benzotriazole in water, Environ. Chem., 8 (2011) 581–588.
  42. L.A. Baker, L.C. Grosvenor, M.N.R. Ashfold, V.G. Stavros, Ultrafast photophysical studies of a multicomponent sunscreen: oxybenzone–titanium dioxide mixtures, Chem. Phys. Lett., 664 (2016) 39–43.
  43. C. Larue, J. Laurette, N. Herlin-Boime, H. Khodja, B. Fayard, A.-M. Flank, F. Brisset, M. Carriere, Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase, Sci. Total Environ., 431 (2012) 197–208.
  44. X. Hu, J. Kang, K. Lu, R. Zhou, L. Mu, Q. Zhou, Graphene oxide amplifies the phytotoxicity of arsenic in wheat, Sci. Rep., 4 (2015) 6122.
  45. E. Wild, K.C. Jones, Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants, Environ. Sci. Technol., 43 (2009) 5290–5294.
  46. H. Sandermann, Plant metabolism of xenobiotics, Trends Biochem. Sci., 17 (1992) 82–84.
  47. M. Brazier, D.J. Cole, R. Edwards, O-glucosyltransferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides), Phytochemistry, 59 (2002) 149–156.
  48. B. Messner, O. Thulke, A.R. Schäffner, Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates, Planta, 217 (2003) 138–46.
  49. P. Schröder, L. Lyubenova, C. Huber, Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?, Environ. Sci. Pollut. Res., 16 (2009) 795–804.
  50. L. Lyubenova, C. Götz, A. Golan-Goldhirsh, P. Schröder, Direct effect of Cd on glutathione S-transferase and glutathione reductase from Calystegia sepium, Int. J. Phytorem., 9 (2007) 465–473.