References

  1. J. Kotowicz, K. Janusz-Szymańska, G. Wiciak, Membrane technologies for the capture of carbon dioxide from exhaust gases for the supercritical carbon power plants Wydawnictwo Politechniki Śląskiej, Monografia – Politechnika Śląska, nr. 551, Gliwice, 2015 (in Polish).
  2. M. Bodzek, J. Bohdziewicz, K. Konieczny, Membrane techniques in environmental protection, Wydawnictwo Politechniki Śląskiej, Gliwice, 1997 (in Polish).
  3. G. Wiciak, K. Janusz-Szymańska, J. Kotowicz, Experimental and numerical studies of CO2 separation of polymer membranes using a gaseous reference mixture, Rynek Energii, 2 (2014) 98–103 (in Polish).
  4. K. Janusz-Szymańska, G. Wiciak, Comparative analysis of the results of the numerical and measurement experiment in the context of research of parameter of CO2 separation using the membrane method, Energetyka, 11 (2013) 795–799 (in Polish).
  5. L. Remiorz, Numerical and experimental study of acoustic CO2 separation, Wydawnictwo, Politechniki Śląskiej, Monografia – Politechnika Śląska nr 562, Gliwice, 2015 (in Polish).
  6. G. Wiciak , K. Janusz-Szymańska, L. Remiorz, The Impact of CO2 Concentration on the Properties of a Polymer Membrane Separator Intended for the CCS Technology, R. Zevenhoven, Ed., 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2014), Turku, Finland, 15–19 June 2014, Vol. 2, Red Hook, Curran, 2014, pp. 1316–1330.
  7. G. Wiciak, L. Remiorz, J. Kotowicz, Instalacja laboratoryjna do synchronicznych badań separacji ditlenku węgla metodami membranową i akustyczną. Analiza systemów energetycznych, Praca zbiorowa, Pod red. B. Węglowskiego, P. Dudy. Kraków: Wydaw. Politechniki Krakowskiej, 2013, pp. 331–349.
  8. A. Janusz-Cygan, The Use of Solid Membranes for the Separation of Carbon Monoxide from Exhaust Gases, Instytut Inżynierii Chemicznej Polskiej Akademi Nauk – Praca doktorska, Gliwice, 2016 (in Polish).
  9. K. Warmuziński, A. Janusz-Cygan, M. Jaschik, M. Tańczyk, A hybrid separation process for the recovery of carbon dioxide from flue gases, Energy Procedia, 37 (2013) 2154–2163.
  10. E. Powell, G. Qiao Greg, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, J. Membr. Sci., 279 (2006) 1–49.
  11. E. Biernacka, T. Suchecka, Membrane Technologies in the Environmental Protection, Wydawnictwo SGGW, Warszawa, 2004 (in Polish).
  12. S. Dushyant, D.R. Luebke, H.W. Pennline, A Review of Carbon Dioxide Selective Membranes. A Topical Report, National Energy Technology Laboratory, United States Department of Energy, 2003.
  13. J. Marano, J. Ciferino, Integration of gas separation membranes with IGCC identifying the right membrane for the right Job, Energy Procedia, 1 (2008) 361–368.
  14. S. Yan, M. Fang, W. Zhang, W. Zhong, Z. Luo, K. Cen, Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China, Energy Convers. Manage., 49 (2008) 3188–3197.
  15. L. Zhao, R. Menzer, E. Riensche, L. Blum, D. Stolten, , Concepts and investment cost analyses of multi-stage membrane systems used in post-combustion processes, Energy Procedia, 1 (2009) 269–278.
  16. M. Harasimowicz, P. Orluk, G. Zakrzewska-Trznadel, A.G. Chmielewski, Applications of polyimide membranes for biogas purification and enrichment, J. Hazard. Mater., 144 (2007) 698–702.
  17. J. Davidson, K. Thambimuthu, Technologies for Capture of Carbon Dioxide, Proceedings of the Seventh Greenhouse Gas Technology Conference, Vancouver, Canada, International Energy Association (IEA), Greenhouse Gas R&D Programme, 2004.
  18. K. Janusz-Szymańska, A. Dryjańska, Possibilities for improving the thermodynamic and economic characteristics of an oxytype power plant with a cryogenic air separation unit, Energy, 85 (2015) 45–61.
  19. R. Abdulrahman, I. Sebastine, Natural gas dehydration process simulation and optimization: a case study of Khurmala Field in Iraqi Kurdistan Region, World Academy of Science, Eng. Technol., 78 (2013) 469–472.
  20. M. Pronobis, Modernization of Power Boilers, WNT, Warszawa, 2002 (in Polish).
  21. R.W. Baker, K. Lokhandwala, Natural gas processing with membranes: an overview, Ind. Eng. Chem. Res., 47 (2008) 2109–2121.
  22. T.S. Chung, L. Ying Jiang, Y. Lia, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci., 32 (2007) 483–507.
  23. H. Feng, H. Zhang, L. Xu, Polymeric membranes for natural gas conditioning, Energy Sources Part A, 29 (2007) 1269–1278.
  24. C.V. Funk, D.R. Lioyd, Zeolite-filled microporous mixed matrix membranes: prediction of gas separation performance, J. Membr. Sci., 313 (2008) 224–231.
  25. M. Netusil, P. Ditl, Comparison of methods for dehydration of natural gas stored in underground gas storages, Inż. Ap. Chem., 49 (2010) 87–88.
  26. H. Sijbesema, K. Nymeijer, R. Marwijk, R. Heijboer, J. Potreck, M. Wessling, Flue gas dehydration using polymer membranes, J. Membr. Sci., 313 (2008) 263–276.
  27. D. Bergmair, S.J. Metz., H.C. de Lange, A.A. van Steenhoven, System analysis of membrane facilitated water generation from air humidity, Desalination, 339 (2014) 26–33.
  28. M. Kasperkowiak, J. Kołodziejek, B. Strzemiecka, A. Voelkel, Effect of impregnating agent and relative humidity on surface characteristics of sorbents determined by inverse gas chromatography, J. Chromatogr. A, 1288 (2013) 101–104.
  29. K.-J. Huang, S.-J. Hwang, W.-H. Lai, The influence of humidification and temperature differences between inlet gases on water transport through the membrane of a proton exchange membrane fuel cell, J. Power Sources, 284 (2015) 77–85.
  30. Q.-f. Jian, G.-q. Ma, X.-l. Qiu, Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field, Renewable Energy, 62 (2014) 129–136.
  31. M. Giacinti Baschetti, M. Minelli, J. Catalano, G.C. Sarti, Gas permeation in perflurosulfonated membranes: influence of temperature and relative humidity, Int. J. Hydrogen Energy, 38 (2013) 11973–11982.
  32. M.A. Díaz, A. Iranzo, F. Rosa, F. Isorna, E. Lopez, J.P. Bolivar, Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regeneration processes, Energy, 90 (2015) 299–309.
  33. J.R. Pauls, D. Fritsch, T. Klassen, K.-V. Peinemann, Gas permeation measurement under defined humidity via constant volume/variable pressure method, J. Membr. Sci., 389 (2012) 343–348.
  34. S. Naudy, F. Collette, F. Thominette, G. Gebel, E. Espuche, Influence of hygrothermal aging on the gas and water transport properties of Nafion® membranes, J. Membr. Sci., 451 (2014) 293–304.
  35. L. Ansaloni, M. Minelli, M. Giacinti Baschetti, G.C. Sarti, Effect of relative humidity and temperature on gas transport in Matrimid®: experimental study and modeling, J. Membr. Sci., 471 (2014) 392–401.
  36. S. Vengatesan, K. Panha, M.W. Fowler, X.-Z. Yuan, H. Wang, Membrane electrode assembly degradation under idle conditions via unsymmetrical reactant relative humidity cycling, J. Power Sources, 207 (2012) 101–110.