References

  1. A. Krastanov, Z. Alexieva, H. Yemendzhiev, Microbial degradation of phenol and phenolic derivatives, Eng. Life Sci., 13 (2013) 76–87.
  2. Y. Zhuo, Y. Zhong, Y. Xu, Y. Sha, Evaluation of transfer resistances in the reactive distillation process for phenol production, Ind. Eng. Chem. Res., 55 (2015) 257–266.
  3. A. Kargari, Phenol removal from aqueous solutions by a novel industrial solvent, Chem. Eng. Commun., 202 (2015) 408–413.
  4. S.H. Lin, R.S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review, J. Environ. Manage., 90 (2009) 1336.
  5. M.A. Hararah, K.A. Ibrahim, A.H. Al-Muhtaseb, R.I. Yousef, A. Abu-Surrah, A. Qatatsheh, Removal of phenol from aqueous solutions by adsorption onto polymeric adsorbents, J. Appl. Polym. Sci., 117 (2010) 1908–1913.
  6. Y.M. Xu, T. Chung, High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation, J. Membr. Sci., 531 (2017) 16–26.
  7. S.J. Han, F.C. Ferreira, A. Livingston, Membrane aromatic recovery system (MARS) – a new membrane process for the recovery of phenols from wastewaters, J. Membr. Sci., 188 (2001) 219–233.
  8. P. Wu, R.W. Field, R. England, B.J. Brisdon, A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams, J. Membr. Sci., 190 (2001) 147–157.
  9. P. Wu, R.W. Field, B.J. Brisdon, R. England, S.J. Barkley, Optimisation of organofunction PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams, Sep. Purif. Technol., 22–23 (2001) 339–345.
  10. H. Ye, X. Yan, X. Zhang, W. Song, Pervaporation properties of oleyl alcohol-filled polydimethylsiloxane membranes for the recovery of phenol from wastewater, Iran. Polym. J., 26 (2017) 639–649.
  11. X. Hao, M. Pritzker, X. Feng, Use of pervaporation for the separation of phenol from dilute aqueous solutions, J. Membr. Sci., 335 (2009) 96–102.
  12. C. Li, X. Zhang, X. Hao, X. Feng, X. Pang, H. Zhang, Thermodynamic and mechanistic studies on recovering phenol crystals from dilute aqueous solutions using pervaporation– crystallization coupling (PVCC) system, Chem. Eng. Sci., 127 (2015) 106–114.
  13. C. Ding, X. Zhang, C. Li, X. Hao, Y. Wang, G. Guan, ZIF-8 incorporated polyether block amide membrane for phenol permselective pervaporation with high efficiency, Sep. Purif. Technol., 166 (2016) 252–261.
  14. B. Sinha, U.K. Ghosh, N.C. Pradhan, B. Adhikari, Separation of phenol from aqueous solution by membrane pervaporation using modified polyurethaneurea membranes, J. Appl. Polym. Sci., 101 (2006) 1857–1865.
  15. T. Gupta, N.C. Pradhan, B. Adhikari, Separation of phenol from aqueous solution by pervaporation using HTPB-based polyurethaneurea membrane, J. Membr. Sci., 217 (2003) 43–53.
  16. S. Das, A.K. Banthia, B. Adhikari, Porous polyurethane urea membranes for pervaporation separation of phenol and chlorophenols from water, Chem. Eng. J., 138 (2008) 215–223.
  17. H. Ye, J. Wang, Y. Wang, X. Chen, S. Shi, Effects of simultaneous chemical cross-linking and physical filling on separation performances of PU membranes, Iran. Polym. J., 22 (2013) 623–633.
  18. W. Kujawski, A. Warszawski, W.O. Ratajczak, T. Porbski, W.A. Capa, A.I. Ostrowska, Application of pervaporation and adsorption to the phenol removal from wastewater, Sep. Purif. Technol., 40 (2004) 123–132.
  19. T. Gupta, N.C. Pradhan, B. Adhikari, Synthesis and performance of a novel polyurethaneurea as pervaporation membrane for the selective removal of phenol from industrial waste water, Bull. Mater. Sci., 25 (2002) 533–536.
  20. N. Izyumskaya, Y. Alivov, S.J. Cho, H. Morkoc, H. Lee, Y.S. Kang, Processing, structure, properties, and applications of PZT thin films, Crit. Rev. Solid State Mater. Sci., 32 (2007) 111–202.
  21. H. Liu, S. Gao, M. Zhu, P. Chen, D. Pan, Use of manganese/silicon tailing waste for coking wastewater treatment: evaluation of phenol and phenylamine removal efficiencies, Water Air Soil Pollut., 226 (2015) 78.
  22. S.A. Younis, Y.M. Moustafa, Synthesis of urea-modified MnFe2O4 for aromatic micro-pollutants adsorption from wastewater: mechanism and modeling, Clean Technol. Environ. Policy, 19 (2017) 527–540.
  23. G.D.F. Lima, V.S. Ferreira, N.V. Godoy, R.F. Medeiros, F.M.D.S. Garrido, E.S. Ribeiro, S. Nakagaki, M.G. Segatelli, M.A. Bezerra, C.R.T. Tarley, Study of silica-manganese oxide hybrid material as a new solid phase for on-line continuous flow enrichment of Cd(II) ions coupled to flame atomic absorption spectrometry, Microchem. J., 109 (2013) 98–105.
  24. W. Peng, S. Wang, X. Li, Shape-controlled synthesis of onedimensional α-MnO2 nanocrystals for organic detection and pollutant degradation, Sep. Purif. Technol., 163 (2016) 15–22.
  25. T. Yeo, D. Shin, J. Shin, H. Hwang, B. Seo, J. Lee, W. Choi, DC-field-driven combustion waves for one-step fabrication of reduced manganese oxide/multi-walled carbon nanotube hybrid nanostructures as high-performance supercapacitor electrodes, J. Mater. Chem. A, 5 (2017) 24707–24719.
  26. Q. Zhu, L. Wang, Z. An, H. Ye, X. Feng, Hydrothermal synthesis of silico-manganese nanohybrid for Cu(II) adsorption from aqueous solution, Appl. Surf. Sci., 371 (2016) 102–111.
  27. M.L. Sforca, I. Yoshida, C.P. Borges, S.P. Nunes, Hybrid membranes based on SiO2/polyether-b-polyamide: morphology and applications, J. Appl. Polym. Sci., 82 (2001) 178–185.
  28. Q. Zhu, L. Wang, Z. An, H. Ye, X. Feng, Hydrothermal synthesis of silico-manganese nanohybrid for Cu(II) adsorption from aqueous solution, Appl. Surf. Sci., 371 (2016) 102–111.
  29. X. Cheng, F. Pan, M. Wang, W. Li, Y. Song, G. Liu, H. Yang, B. Gao, H. Wu, Z. Jiang, Hybrid membranes for pervaporation separations, J. Membr. Sci., 541 (2017) 329–346.
  30. Y.M. Xu, T. Chung, High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation, J. Membr. Sci., 531 (2017) 16–26.
  31. G. Wu, M. Jiang, T. Zhang, Z. Jia, Tunable pervaporation performance of modified MIL-53(Al)-NH2/poly(vinyl alcohol) mixed matrix membranes, J. Membr. Sci., 507 (2016) 72–80.
  32. D. Hua, Y.K. Ong, Y. Wang, T. Yang, T. Chung, ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol, J. Membr. Sci., 453 (2014) 155–167.
  33. K.S.W. Sing, Reporting physisorption data for gas/solid systems, Pure Appl. Chem., 57 (1985) 603–619.
  34. H. Morinaga, Mechanism of metallic particle growth and metalinduced pitting on Si wafer surface in wet chemical processing, J. Electrochem. Soc., 141 (1994) 2834–2841.
  35. D. Sun, P. Yang, L. Li, H.H. Yang, B.B. Li, Poly(dimethylsiloxane)-poly (tetrafluoroethylene)/poly (vinylidenefluoride) (PDMS-PTFE/PVDF) hollow fiber composite membrane for pervaporation of chloroform from aqueous solution, Korean J. Chem. Eng., 31 (2014) 1877–1884.
  36. G. Zhang, J. Li, N. Wang, H. Fan, R. Zhang, G. Zhang, S. Ji, Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles, J. Membr. Sci., 492 (2015) 322–330.
  37. G. Liu, Z. Jiang, K. Cao, S. Nair, X. Cheng, J. Zhao, H. Gomaa, H. Wu, F. Pan, Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles, J. Membr. Sci., 523 (2017) 185–196.
  38. G. Wu, M. Jiang, T. Zhang, Z. Jia, Tunable pervaporation performance of modified MIL-53(Al)-NH2/poly(vinyl alcohol) mixed matrix membranes, J. Membr. Sci., 507 (2016) 72–80.
  39. Y. Zhang, N. Wang, C. Zhao, L. Wang, S. Ji, J. Li, Co(HCOO)2- based hybrid membranes for the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures, J. Membr. Sci., 520 (2016) 646–656.
  40. J.G. Varghese, R.S. Karuppannan, M.Y. Kariduraganavar, Development of hybrid membranes using chitosan and silica precursors for pervaporation separation of water + isopropanol mixtures, J. Chem. Eng. Data, 55 (2010) 2084–2092.
  41. W. Zhang, Y. Ying, J. Ma, X. Guo, H. Huang, D. Liu, C. Zhong, Mixed matrix membranes incorporated with polydopaminecoated metal-organic framework for dehydration of ethylene glycol by pervaporation, J. Membr. Sci., 527 (2017) 8–17.
  42. D. Hua, Y.K. Ong, Y. Wang, T. Yang, T. Chung, ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol, J. Membr. Sci., 453 (2014) 155–167.
  43. L.L. Ngoc, Y. Wang, T. Chung, Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation, J. Membr. Sci., 379 (2011) 174–183.
  44. R.W. Baker, J.G. Wijmans, Y. Huang, Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data, J. Membr. Sci., 348 (2010) 346–352.
  45. X. Feng, R.Y.M. Huang, Estimation of activation energy for permeation in pervaporation processes, J. Membr. Sci., 118 (1996) 127–131.
  46. P. Wu, R.W. Field, R. England, B.J. Brisdon, A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams, J. Membr. Sci., 190 (2001) 147–157.
  47. F. Pithan, C. Staudt-Bickel, Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation, Chemphyschem, 4 (2003) 967–973.
  48. P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, D. Wang, Solutionprocessed, organophilic membrane derived from a polymer of intrinsic microporosity, Adv. Mater., 16 (2004) 456–459.