References

  1. P. Mizsey, Waste reduction in the chemical industry: a two level problem, J. Hazard. Mater., 37 (1994) 1–13.
  2. A.J. Toth, F. Gergely, P. Mizsey, Physicochemical treatment of pharmaceutical wastewater: distillation and membrane processes, Period. Polytech. Chem., 55 (2011) 59–67.
  3. J.N. Bhakta, Handbook of Research on Inventive Bioremediation Techniques, IGI Global, Hershey, PA, 2017.
  4. M.C. Belis-Bergouignan, V. Oltra, M. Saint Jean, Trajectories towards clean technology: example of volatile organic compound emission reductions, Ecol. Econ., 48 (2004) 201–220.
  5. M. Getzner, The quantitative and qualitative impacts of clean technologies on employment, J. Cleaner Prod., 10 (2002) 305–319.
  6. T. Brinkmann, G.G. Santonja, H. Yükseler, S. Roudier, L.D. Sancho, Best Available Techniques (BAT) Reference Document for Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector, Industrial Emissions Directive, 2010/75/EU, Integrated Pollution Prevention and Control, JRC Science for Policy Report, 2016, Available at: http://eippcb.jrc.ec.europa.eu/reference/BREF/CWW_Bref_2016_published.pdf.
  7. A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpää, An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J., 219 (2013) 499–511.
  8. D. Das, V. Gaur, N. Verma, Removal of volatile organic compound by activated carbon fiber, Carbon, 42 (2004) 2949–2962.
  9. C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon, 42 (2004) 83–94.
  10. S.X. Liu, L.M. Vane, M. Peng, Theoretical analysis of concentration polarization effect on VOC removal by pervaporation, J. Hazard. Sub. Res., 4 (2004) 1–21.
  11. B. Smitha, D. Suhanya, S. Sridhar, M. Ramakrishna, Separation of organic–organic mixtures by pervaporation—a review, J. Membr. Sci., 241 (2004) 1–21.
  12. M. Shestakova, M. Sillanpää, Removal of dichloromethane from ground and wastewater: a review, Chemosphere, 93 (2013) 1258–1267.
  13. A.J. Toth, P. Mizsey, Comparison of air and steam stripping: removal of organic halogen compounds from process wastewaters, Int. J. Environ. Sci. Technol., 12 (2015) 1321–1330.
  14. M.K. Verma, R.K. Tyagi, Aeration of volatile organic compounds using gas dispersion impellers, J. Mech. Eng. Res., 4 (2003) 213–224.
  15. K. Koczka, P. Mizsey, New area for distillation: wastewater treatment, Period. Polytech. Chem., 54 (2010) 41–45.
  16. J. Levec, A. Pintar, Catalytic wet-air oxidation processes: a review, Catal. Today, 124 (2007) 172–184.
  17. A.J. Toth, Liquid Waste Treatment with Physicochemical Tools for Environmental Protection, PhD Thesis, Budapest University of Technology and Economics, Budapest, 2015.
  18. 28/2004. (XII. 25.) Ministry of Environment Regulation, Available at: https://net.jogtar.hu/jr/gen/hjegy_doc.cgi?docid=A0400028.KVV.
  19. D.L. McCabe, M.A. Vivona, Treating process wastewater employing vacuum distillation using mechanical vapor recompression, Environ. Prog., 18 (1999) 30–33.
  20. P. Mizsey, K. Koczka, A. Tungler, Treatment of process waters with physicochemical techniques, Hung. J. Chem., 114 (2008) 107–113.
  21. M. Anastasio, The Circular Economy: Practical Steps to Enhance the EU Package, Green Budget Europe, Report, 2016, Available at: http://green-budget.eu/wp-content/uploads/GBE-Circular-Economy-policy-briefing.pdf.
  22. E.W. Flick, Industrial Solvents Handbook, Noyes Data Corporation, Norwich, NY, 1998.
  23. G. Wypych, Handbook of Solvents, ChemTec Publishing, Ontario, Canada, 2001.
  24. J. Gmehling, U. Onken, Vapor-Liquid Equilibrium Data Collection: Aqueous-Organic Systems, DECHEMA, Frankfurt, Germany, 1977.
  25. C. Marsden, Solvents and Allied Substances Manual With Solubility Chart, Cleaver-Hume and Elsevier, London, 1954.
  26. D.S. Abrams, J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J., 21 (1975) 116–128.
  27. A. Klamt, G.J.P. Krooshof, R. Taylor, COSMOSPACE: alternative to conventional activity-coefficient models, AIChE J., 48 (2002) 2332–2349.
  28. L.D. Simoni, Y. Lin, J.F. Brennecke, M.A. Stadtherr, Modeling liquid-liquid equilibrium of ionic liquid systems with NRTL, electrolyte-NRTL, and UNIQUAC, Ind. Eng. Chem. Res., 47 (2008) 256–272.
  29. B. Wiśniewska-Goclowska, S.X.K. Malanowski, A new modification of the UNIQUAC equation including temperature dependent parameters, Fluid Phase Equilibr., 180 (2001) 103–113.
  30. A.J. Toth, A. Szanyi, K. Angyal-Koczka, P. Mizsey, Enhanced separation of highly non-ideal mixtures with extractive heterogeneous-azeotropic distillation, Sep. Sci. Technol., 51 (2016) 1238–1247.
  31. E. Cséfalvay, T. Benkő, N. Valentínyi, A.J. Tóth, J.M. Tukacs, I. Gresits, A. Kovács, L. Rácz, S. Solti, P. Mizsey, Should we worry about pouring petrol on the tyres?, Ind. Ecol., 3 (2015) 3–16.
  32. 220/2004. (VII. 21) Government Regulation, Available at: https://net.jogtar.hu/jr/gen/hjegy_doc.cgi?docid=A0400220.KOR.
  33. G. Réti, Globális célok - helyi megoldások az Egis környezetvédelmében, Ablakon Bedobott Pénz, KÖVET Egyesület, 12 (2014) 12–13.
  34. J.M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, New York, 1988.
  35. A.J. Toth, E. Haaz, T. Nagy, R. Tari, A.J. Tarjani, D. Fozer, A. Szanyi, K.-A. Koczka, L. Racz, G. Ugro, P. Mizsey, Evaluation of the Accuracy of Modelling the Separation of Highly Non-Ideal Mixtures: Extractive Heterogeneous-Azeotropic Distillation, A. Espuña, M. Graells, L. Puigjaner, Eds., 27th European Symposium on Computer-Aided Process Engineering (ESCAPE-27), Barcelona, Spain, 1–5. October 2017, pp. 241–246.