References

  1. R. Liu, Q.Q. Guo, W. Zheng, L.J. Chen, J.F. Luo, Cultivation of an Arthrospira platensis with digested piggery wastewater, Water Sci. Technol., 72 (2015) 1774–1779.
  2. J.L. Wang, G.F. Chen, F.X. Liu, X.F. Song, G.Y. Zou, Combined ozonation and aquatic macrophyte (Vallisneria natans) treatment of piggery effluent: Water matrix and antioxidant responses, Ecol. Eng., 102 (2017) 39–45.
  3. J. Meng, J.L. Li, J.Z. Li, K. Sun, P. Antwi, K.W. Deng, C. Wang, G. Buelna, Efficiency and bacterial populations related to pollutant removal in an up flow microaerobic sludge reactor treating manure–free piggery wastewater with low COD/TN ratio, Bioresour. Technol., 201 (2016) 166–173.
  4. S. Wang, L.W. Deng, Z. Xu, D. Zheng, L. Wang, Acidification during aerobic treatment of digested swine wastewater and its effect on pollutant removal, Chem. Ecol., 33 (2017) 403–419.
  5. L.W. Deng, P. Zheng, Z. Chen, Q. Mahmood, Improvement in post–treatment of digested swine wastewater, Bioresour. Technol., 99 (2008) 3136–3145.
  6. H.C. Kim, W.J. Choi, J.H. Ryu, S.K. Maeng, H.S. Kim, B.C. Lee, K.G. Song, Optimizing cultivation strategies for robust algal growth and consequent removal of inorganic nutrients in pretreated livestock effluent, Appl. Biochem. Biotechnol., 174 (2014) 1668–1682.
  7. J.Y. Liu, Y.M. Song, Y.H. Liu, R. Ruan, Yeast as a bioremediation nano particle agent in piggery–digested wastewater treatment, Environ Eng Sci., 33 (2016) 317–323.
  8. J.M. Prandini, M.L.B. da Silva, M.P. Mezzari, M. Pirolli, W. Michelon, H.M. Soares, Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by micro algae Scenedesmus spp, Bioresour. Technol., 202 (2016) 67–75.
  9. Z. Zeng, P. Zheng, A.Q. Ding, M. Zhang, G. Abbas, W. Li, Source analysis of organic matter in swine wastewater after anaerobic digestion with EEM–PARAFAC, Environ. Sci. Pollut. Res., 24 (2017) 6770–6778.
  10. Y.H. Shi, J.H. Huang, G.M. Zeng, Y.L. Gu, Y. Hu, B. Tang, J.X. Zhou, Y. Yang, L.X. Shi, Evaluation of soluble microbial products (SMP) on membrane fouling in membrane bio reactors (MBRs) at the fractional and overall level: a review, Rev. Environ. Sci. Biotechnol., 17 (2018) 71–85.
  11. D.L. Cheng, H.H. Ngo, W.S. Guo, Y.W. Liu, J.L. Zhou, S.W. Chang, D.D. Nguyen, X.T. Bui, X.B. Zhang, Bioprocessing for elimination antibiotics and hormones from swine wastewater, Sci. Total Environ., 621 (2018) 1664–1682.
  12. E. Piacentini, R. Mazzei, L. Giorno, Membrane bioreactors for pharmaceutical applications: optically pure enantiomers production, Curr. Pharm. Des., 23 (2017) 250–262.
  13. P. Krzeminski, L. Leverette, S. Malamis, E. Katsou, Membrane bioreactors – A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects, J. Membr. Sci., 527 (2017) 207–227.
  14. X.Y. Song, R. Liu, L.J. Chen, T. Kawagishi, Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics, Front. Environ. Sci. Eng., 11 (2017).
  15. H.J. Lin, Y.Q. Lin, D.H. Wang, Y.W. Pang, F.B. Zhang, S.H. Tan, Ammonium removal from digested effluent of swine wastewater by using solid residue from magnesium–hydroxide flue gas desulfurization process, J. Ind. Eng. Chem., 58 (2018) 148–154.
  16. Q.W. Sui, C. Liu, H.M. Dong, Z.P. Zhu, Effect of ammonium nitrogen concentration on the ammonia–oxidizing bacteria community in a membrane bioreactor for the treatment of anaerobically digested swine wastewater, J. Biosci. Bioeng., 118 (2014) 277–283.
  17. N. Prado, J. Ochoa, A. Amrane, Zero Nuisance Piggeries: Long–term performance of MBR (membrane bioreactor) for dilute swine wastewater treatment using submerged membrane bioreactor in semi–industrial scale, Water Res., 43 (2009) 1549–1558.
  18. K. Xiao, Y. Xu, S. Liang, T. Lei, J.Y. Sun, X.H. Wen, H.X. Zhang, C.S. Chen, X. Huang, Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect, Front. Environ. Sci. Eng., 8 (2014) 805–819.
  19. L.J. Zhou, B. Ye, S.Q. Xia, Assessing membrane biofouling and its gel layer of anoxic/oxic membrane bioreactor for megacity municipal wastewater treatment during plum rain season in Yangtze River Delta, China, Water Res., 127 (2017) 22–31.
  20. B. Zhang, S.F. Chen, Effect of different organic matters on flocculation of Chlorella sorokiniana and optimization of flocculation conditions in swine manure wastewater, Bioresour. Technol., 192 (2015) 774–780.
  21. O.S. Amuda, A. Alade, Coagulation/flocculation process in the treatment of abattoir wastewater, Desalination, 196 (2006) 22–31.
  22. M.B. Vanotti, J.M. Rice, A.Q. Ellison, P.G. Hunt, F.J. Humenik, C.L. Baird, Solid–liquid separation of swine manure with polymer treatment and sand filtration, Trans. ASAE, 48 (2005) 1567–1574.
  23. G.B. Reddy, D.A. Forbes, P.G. Hunt, J.S. Cyrus, Effect of polyaluminium chloride on phosphorus removal in constructed wetlands treated with swine wastewater, Water Sci. Technol., 63 (2011) 2938–2943.
  24. J.Y. Guo, Y. Huang, C. Chen, Y. Xiao, J. Chen, B.Y. Jian, Enhanced anaerobically digested swine wastewater treatment by the composite of polyaluminum chloride (PAC) and Bacillus megatherium G106 derived EPS, Scientific reports, 7 (2017).
  25. Y. Wen, W.L. Zheng, Y.D. Yang, A.S. Cao, Q. Zhou, Influence of Al3+ addition on the flocculation and sedimentation of activated sludge: Comparison of single and multiple dosing patterns, Water Res., 75 (2015) 201–209.
  26. J.Z. Li, J. Meng, J.L. Li, C. Wang, K.W. Deng, K. Sun, G. Buelna, The effect and biological mechanism of COD/TN ratio on nitrogen removal in a novel up flow micro aerobic sludge reactor treating manure–free piggery wastewater, Bioresour. Technol., 209 (2016) 360–368.
  27. D.J. Batstone, T. Hulsen, C.M. Mehta, J. Keller, Platforms for energy and nutrient recovery from domestic wastewater: A review, Chemosphere, 140 (2015) 2–11.
  28. L. Zhou, Z. Zhang, W. Jiang, W. Guo, H.H. Ngo, X. Meng, J. Fan, J. Zhao, S. Xia, Effects of low-concentration Cr (VI) on the performance and the membrane fouling of a submerged membrane bioreactor in the treatment of municipal wastewater, Biofouling, 30 (2014) 105–114.
  29. L.J. Zhou, W.Q. Zhuang, X. Wang, K. Yu, S.F. Yang, S.Q. Xia, Potential effects of loading nano zero valent iron discharged on membrane fouling in an anoxic/oxic membrane bioreactor, Water Res., 111 (2017) 140–146.
  30. L. Zhou, S. Xia, L. Alvarez–Cohen, Structure and distribution of inorganic components in the cake layer of a membrane bioreactor treating municipal wastewater, Bioresour. Technol., 196 (2015) 586–591.
  31. APHA, Standard methods for the examination of water and wastewater, 20th ed., American Public Health Association, Washington, DC, USA, 1998.
  32. F.G. Meng, H.M. Zhang, F.L. Yang, S.T. Zhang, Y.S. Li, X.W. Zhang, Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors, Sep. Purif. Technol., 51 (2006) 95–103.
  33. China–NEPA, Water and wastewater monitoring methods, in, Chinese Enviromental Science Publishing House, Beijing, China, 2002.
  34. L. Zhou, W. Zhuang, X. Wang, K. Yu, S. Yang, S. Xia, Potential acute effects of suspended aluminum nitride (AlN) nano particles on soluble microbial products (SMP) of activated sludge, J. Environ. Sci., 57 (2017) 284–292.
  35. J.Q. Ni, W.P. Robarge, C.H. Xiao, A.J. Heber, Volatile organic compounds at swine facilities: A critical review, Chemosphere, 89 (2012) 769–788.
  36. M.D. Barton, Impact of antibiotic use in the swine industry, Curr. Opin. Microbiol., 19 (2014) 9–15.
  37. X. Zhang, Y. Wen, A.S. Cao, Influence of Al3+ addition on the flocculation and sedimentation of thermophilic activated sludge, in: S. Chen, S. Zhou (Eds.) Proc. International Conference on Advances in Energy, Environment and Chemical Engineering, 2015, pp. 789–792.
  38. F. Gao, Z.H. Yang, G.M. Zeng, K.X. Hu, G.X. Xie, Treating high–strength ammonium piggery wastewater with Anoxic/Aerobic SBR, 2003.
  39. Z. Liu, Y.J. Liu, P. Kuschk, J.X. Wang, Y. Chen, X.C. Wang, Poly aluminum chloride (PAC) enhanced formation of aerobic granules: Coupling process between physico chemical–biochemical effects, Chem. Eng. J., 284 (2016) 1127–1135.
  40. Z. Zhou, Z.C. Wu, G.W. Gu, Z.W. Wang, Parameter estimation protocol for secondary clarifier models based on sludge volume index and operational parameters, Asia–Pacific J. Chem. Eng., 6 (2011) 266–273.
  41. B. Hultman, M. Lowen, U. Karlsson, P.H. Li, L. Molina, Prediction of activated–sludge sedimentation based on sludge indexes, Water Sci. Technol., 24 (1991) 33–42.
  42. X. Li, W.L. Yang, H.J. He, S.H. Wu, Q. Zhou, C.P. Yang, G.M. Zeng, L. Luo, W. Lou, Responses of micro algae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater, Bioresour. Technol., 251 (2018) 274–279.
  43. W. Zheng, Z.Y. Zhang, R. Liu, Z.F. Lei, Removal of veterinary antibiotics from anaerobically digested swine wastewater using an intermittently aerated sequencing batch reactor, J. Environ. Sci., 65 (2018) 8–17.
  44. D. Kim, K.J. Min, K. Lee, M.S. Yu, K.Y. Park, Effects of pH, molar ratios and pre–treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater, Environ. Eng. Res., 22 (2017) 12–18.
  45. L. Zhou, Z. Zhang, S. Xia, Characteristics of dissolved organic matters in submerged membrane bioreactor with low–concentration Cr (VI), Desal. Water Treat., 57 (2015) 8927–8934.
  46. L. Li, Z.P. Li, M. Liu, X.Y. Ma, X.X. Tang, Characterizing dissolved organic matter (DOM) in wastewater from scale pig farms using three–dimensional excitation–emission matrices (3DEEM), Spectroscopy Spectral Anal., 37 (2017) 577–583.
  47. S. Arabi, G. Nakhla, Impact of molecular weight distribution of soluble microbial products on fouling in membrane bioreactors, Sep. Purif. Technol., 73 (2010) 391–396.
  48. F. Saravia, C. Zwiener, F.H. Frimmel, Interactions between membrane surface, dissolved organic substances and ions in submerged membrane filtration, Desalination, 192 (2006) 280–287.
  49. M.Q. Niu, W.J. Zhang, D.S. Wang, Y. Chen, R.L. Chen, Correlation of physico chemical properties and sludge dewater ability under chemical conditioning using inorganic coagulants, Bioresour. Technol., 144 (2013) 337–343.
  50. L.L. Wang, S. Chen, H.T. Zheng, G.Q. Sheng, Z.J. Wang, W.W. Li, H.Q. Yu, A new polystyrene–latex–based and EPS–containing synthetic sludge, Front. Environ. Sci. Eng., 6 (2012) 131–139.
  51. Z.L. Li, P.L. Lu, D.J. Zhang, G.C. Chen, S.W. Zeng, Q. He, Population balance modeling of activated sludge flocculation: Investigating the influence of Extracellular Polymeric Substances (EPS) content and zeta potential on flocculation dynamics, Sep. Purif. Technol., 162 (2016) 91–100.
  52. A.R. Pendashteh, A. Fakhru’l–Razi, S.S. Madaeni, L.C. Abdullah, Z.Z. Abidin, D.R.A. Biak, Membrane foulants characterization in a membrane bioreactor (MBR) treating hypersaline oily wastewater, Chem. Eng. J., 168 (2011) 140–150.
  53. D. Jermann, W. Pronk, S. Meylan, M. Boller, Interplay of different NOM fouling mechanisms during ultra filtration for drinking water production, Water Res., 41 (2007) 1713–1722.
  54. Y. Xin, M.W. Bligh, A.S. Kinsela, T.D. Waite, Effect of iron on membrane fouling by alginate in the absence and presence of calcium, J. Membr. Sci., 497 (2016) 289–299.
  55. X. Shen, B.Y. Gao, X. Huang, F. Bu, Q.Y. Yue, R.H. Li, B. Jin, Effect of the dosage ratio and the viscosity of PAC/PDMDAAC on coagulation performance and membrane fouling in a hybrid coagulation–ultrafiltration process, Chemosphere, 173 (2017) 288–298.
  56. F.G. Meng, S.Q. Zhang, Y. Oh, Z.B. Zhou, H.S. Shin, S.R. Chae, Fouling in membrane bioreactors: An updated review, Water Res., 114 (2017) 151–180.
  57. J. Zhang, W.L.C. Loong, S. Chou, C. Tang, R. Wang, A.G. Fane, Membrane biofouling and scaling in forward osmosis membrane bioreactor, J. Membr. Sci., 403–404 (2012) 8–14.
  58. Z.W. Wang, P. Wang, Q.Y. Wang, Z.C. Wu, Q. Zhou, D.A.H. Yang, Effective control of membrane fouling by filamentous bacteria in a submerged membrane bioreactor, Chem. Eng. J., 158 (2010) 608–615.