References

  1. W. Yongqing, N. Lior, Proposal and analysis of a high-efficiency combined desalination and refrigeration system based on the LiBr–H2O absorption cycle—Part 1: System configuration and mathematical model. Energy Convers. Manag., 52(1) (2011) 220–227.
  2. T.P. Gregory, E.W. Tow, L.D. Banchik, H.W. Chung, J.H. Lienhard, Energy consumption in desalinating produced water from shale oil and gas extraction. Desalination, 366 (2015) 94–112.
  3. M.V.V. Rane, Y.S. Padiya, Heat pump operated freeze concentration system with tubular heat exchanger for seawater desalination, Energy Sustain Dev., 15 (2011) 184–191.
  4. S. Oumar, N. Galanis, M. Sorin, Thermodynamic study of multi-effect thermal vapour-compression desalination systems. Energy, 72 (2014) 69–79.
  5. V.G. Gude, N. Nirmalakhandan, Combined desalination and solar-assisted air-conditioning system, Energy Convers. Manag, 49(11) (2008) 3326–3330.
  6. A. Farsi, S.H. Mohammadi, M. Ameri, An efficient combination of transcritical CO2 refrigeration and multi-effect desalination: Energy and economic analysis. Energy Convers. Manag, 127 (2016) 561–575.
  7. A. Christ, R.L. Klaus, C.T. Hui, Boosted multi-effect distillation for sensible low-grade heat sources: a comparison with feed pre-heating multi-effect distillation. Desalination, 366 (2015) 32–46.
  8. A. Christ, R.L. Klaus, C.T. Hui, Thermodynamic optimization of multi effect distillation driven by sensible heat sources. Desalination, 336 (2014) 160–167.
  9. M. Hosseini, I. Dincer, P. Ahmadi, H.B. Avval, M. Ziaasharhagh, Thermodynamic modelling of an integrated solid oxide fuel cell and micro gas turbine system for desalination purposes. Int. J. Energy Res., 37(5) (2013) 426–434.
  10. Y. Ma, L. Zhongyan, T. Hua, A review of transcritical carbon dioxide heat pump and refrigeration cycles, Energy 55 (2013) 156–172.
  11. Handbook, A. S. H. R. A. E. Refrigeration, 1791 Tullie Circle, NE Atlanta, GA 30329, 2010.
  12. J. Sarkar, A. Neeraj, Performance optimization of transcritical CO2 cycle with parallel compression economization. Int. J. Therm. Sci., 49(5) (2010) 838–843.
  13. J.L. Yang, Y.T. Ma, M.X. Li, H.Q. Guan, Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander. Energy, 30(7) (2005) 1162–1175.
  14. O.J. Shariatzadeh, S.S. Abolhassani, M. Rahmani, M.Z. Nejad, Comparison of transcritical CO2 refrigeration cycle with expander and throttling valve including/excluding internal heat exchanger: Exergy and energy points of view. Appl. Therm. Eng., 93 (2016) 779–787.
  15. J. Wang, P. Zhao, X. Niu, Y. Dai, Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy. Appl. Energy, 94 (2012) 58–64.
  16. S.H. Mohammadi, M. Ameri, Energy and exergy analysis of absorption–compression hybrid air-conditioning system. HVAC & R Res., 19(6) (2013) 744–753.
  17. H.T. El-Dessouky, H.M. Ettouney, Fundamentals of Salt Water Desalination, Elsevier, 2002.
  18. L. Awerbuch, Understanding of thermal distillation desalination processes, IDA Academy, Singapore, 2012.
  19. A.H. Mosaffa, L.G. Farshi, C.I. Ferreira, M.A. Rosen, Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank inter coolers. Energy Convers. Manag., 117 (2016) 442–453.
  20. B.T. Austin, K. Sumathy, Transcritical carbon dioxide heat pump systems: A review, Renew Sust. Energ Rev., 15(8) (2011) 4013–4029.
  21. Z.B. Liu, Y.L. He, Y.F. Yang, J.Y. Fei, Experimental study on heat transfer and pressure drop of supercritical CO2 cooled in a large tube. Appl. Therm. Eng., 70(1) (2014) 307–315.
  22. I.S. Al-Mutaz, I. Wazeer, Comparative performance evaluation of conventional multi-effect evaporation desalination processes, Appl. Therm. Eng., 73(1) (2014) 1194–1203.
  23. Y.A. Cengel, M.A. Boles, An engineering approach, Energy, 2002.
  24. R.K. Shah, D.P. Sekulic, Fundamentals of Heat Exchanger Design. John Wiley & Sons, 2003.
  25. I.J. Esfahani, A. Ataei, V. Shetty,T. Oh, J.H. Park, C. Yoo, Modeling and genetic algorithm-based multi-objective optimization of the MED-TVC desalination system, Desalination, 292 (2012) 87–104.
  26. M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, Thermophysical properties of seawater: a review of existing correlations and data. Desal. Water Treat., 16 (2010) 354–380.
  27. H. Ghaebi, M. Amidpour, S. Karimkashi, O. Rezayan, Energy, exergy and thermo economic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover,Int. J. Energ. Res., 35(8) (2011) 697–709.
  28. A. Bejan, Advanced Engineering Thermodynamics, 3rd ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2006.
  29. M.J. Moran, Availability Analysis: A Guide to Efficient Energy Use. ASME Press, New York, 1989.
  30. J.R. Cooper, Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater. The International Association for the Properties of Water and Steam, September, 2008, pp. 1–19.
  31. M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, Formulation of seawater flow exergy using accurate thermodynamic data. International Mechanical Engineering Congress and Exposition, ASME, 5 (2010) 675–682.
  32. M.H. Sharqawy, S.M. Zubair, On exergy calculations of seawater with applications in desalination systems, Int. J. Therm. Sci., 50(2) (2011) 187–196.
  33. X. Wang, A. Christ, K. Regenauer-Lieb, K. Hooman, H.T. Chua, Low grade heat driven multi-effect distillation technology. Int. J. Heat Mass Transfer, 54 (2011) 5497–5503.
  34. J. Szargut, Exergy Method: Technical and Ecological Applications, 2005.
  35. Y.A. Çengel, M.A. Boles, Thermodynamics: An Engineering Approach, McGraw-Hill Education, 2015.
  36. H.T. El-Dessouky, H.M. Ettouney, F. Mandani, Performance of parallel feed multiple effect evaporation system for seawater desalination. Appl. Therm. Eng., 20(17) (2000) 1679–1706.