References

  1. Water and Jobs, A report by The United Nations World Water Development 2016, United Nations Water. Available at: http://unesdoc.unesco.org/images/0024/002439/243938e.pdf (Accessed 21 December 2017).
  2. Financing universal water, sanitation and hygiene under the sustainable development goals, GLAAS 2017, A Report by UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water, World Health Organisation. Available at: http://apps.who.int/iris/bitstream/handle/10665/254999/9789241512190-eng.pdf?sequence=1 (Accessed 21 December 2017).
  3. G. Xiao, X. Wang, M. Ni, F. Wang, W. Zhu, Z. Luo, K. Cen, A review on solar stills for brine desalination, Appl. Energy, 103 (2013) 642–652.
  4. D. Dsilva Winfred Rufuss, S. Iniyan, L. Suganthi, P.A. Davies, Solar stills: a comprehensive review of designs, performance and material advances, Renew. Sustain. Energy Rev., 63 (2016) 464–496.
  5. A. Muthu Manokar, K. Kalidasa Murugavel, G. Esakkimuthu, Different parameters affecting the rate of evaporation and condensation on passive solar still — a review, Renew. Sustain. Energy Rev., 38 (2014) 309–322.
  6. K. Kalidasa Murugavel, K. Srithar, Performance study on basin type double slope solar still with different wick materials and minimum mass of water, Renew. Energy, 36 (2011) 612–620.
  7. R. Tripathi, G.N. Tiwari, Effect of water depth on internal heat and mass transfer for active solar distillation, Desalination, 173 (2005) 187–200.
  8. R. Tripathi, G.N. Tiwari, Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction, Solar Energy, 80 (2006) 956–967
  9. M.K. Phadatare, S.K. Verma, Influence of water depth on internal heat and mass transfer in a plastic solar still, Desalination, 217 (2007) 267–275.
  10. V. Velmurugan, M. Gopalakrishnan, R. Raghu, K. Srithar, Single basin solar still with fin for enhancing productivity, Energy Convers. Manage., 49 (2008) 2602–2608.
  11. V. Manikandan, K. Shanmugasundaram, B. Janarthanan, J. Chandrasekaran, Wick type solar stills: a review, Renew. Sustain. Energy Rev., 20 (2013) 322–335.
  12. S. Nijmeh, S. Odeh, B. Akash, Experimental and theoretical study of a single-basin solar still in Jordan, Int. J. Heat Mass Trans., 32 (2005) 565–572.
  13. P. Valsaraj, An experimental study on solar distillation in a single slope basin still by surface heating the water mass, Renew. Energy, 25 (2002) 607–612.
  14. A.A. El Sebaii, S. Aboul-Enein, M.R.I. Ramadan, E. El-Bialy, Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber, Energy, 25 (2000) 35–49.
  15. C. Tenthani, A. Madhlopa, C.Z. Kimambo, Improved Solar Still for Water Purification, J. Sust. Energy Environ., 3 (2012) 111–113.
  16. H.N. Singh, G.N. Tiwari, Monthly performance of passive and active solar stills for different Indian climatic conditions, Desalination, 168 (2004) 145–145.
  17. K. Ashok, J.D. Anand, G.N. Tiwari, Transient analysis of a double slope double basin solar distiller, Energy Convers. Manage., 31 (1991) 129–139.
  18. H.E.S. Fatha, M. El-Samanoudy, K. Fahmy, A. Hassabou, Thermal-economic analysis and comparison between pyramidshaped and single-slope solar still configurations, Desalination, 159 (2003) 69–79.
  19. K.K. Murugavel, S. Sivakumar, J.R. Ahamed, K.K.S.K. Chockalingam, K. Srithar, Single basin double slope solar still with minimum basin depth and energy storing materials, Appl. Energy, 87 (2010) 514–523.
  20. M. Sakthivel, S. Shanmugasundaram, Effect of energy storage medium (black granite gravel) on the performance of a solar still, Int. J. Energy Res., 32 (2008) 68–82.
  21. M. Naima Mona, A. Abd El Kawi Mervat, Non-conventional solar stills Part1. Non-conventional solar stills with charcoal particles as absorber medium, Desalination, 153 (2002) 55–64.
  22. A. Salah, M. Abu-Khader Mazen, B. Omar, Effect of various absorbing materials for the thermal performance of solar stills, Desalination, 242 (2009) 128–137.
  23. A.A. El-Sebaii, A.A. Al-Ghamdi, F.S. Al-Hazmi, S. Adel Faidah, Thermal performance of a single basin solar still with PCM as a storage medium, Appl. Energy, 86 (2009) 1187–1195.
  24. M. Dashtban, F.F. Tabrizi, Thermal analysis of a weir-type cascade solar still integrated with PCM storage, Desalination, 279 (2011) 415–422.
  25. H.E.S. Fath, Technical assessment of solar thermal energy storage technologies, Desalination, 14 (1998) 35–40.
  26. W.G. Su, J. Darkwa, G. Kokogiannakis, Review of solid–liquid phase change materials and their encapsulation technologies, Renewable Sustainable Energy Rev., 48 (2015) 373–391.
  27. Kinga Pielichowska, Krzysztof Pielichowski, Phase change materials for thermal energy storage, Prog. Mater. Sci., 65 (2014) 67–123.
  28. J. Wei, Y. Kawaguchi, S. Hirano, H. Takeuchi, Study on a PCM heat storage system for rapid heat supply, Appl. Therm. Eng., 25 (2005) 2903–2920.
  29. H. Ettouney, I. Alatiqi, M. Al-Sahali, K. Al Hajirie, Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and beads, Energy Convers. Manage., 47 (2006) 211–228.
  30. A. Castell, C. Sole, M. Medrano, J. Roca, L.F. Cabeza, D. Garci, Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins, Appl. Therm. Eng., 28 (2008) 1676–1686.
  31. R. Velraj, R.V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer, Heat transfer enhancement in a latent heat storage system, Solar Energy, 65 (1999) 171–180.
  32. R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage, Energy Convers. Manage., 95 (2015) 193–228.
  33. J.M. Khodadadi, L.W. Fan, H. Babaei, Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review, Renew. Sustain. Energy Rev., 24 (2013) 418–444.
  34. M.A. Kibria, M.R. Anisur, M.H. Mahfuz, R. Saidur, H.S.C. Metselaar, A review on thermophysical properties of nanoparticle dispersed phase change materials, Energy Convers. Manage., 95 (2015) 69–89.
  35. A. Strupstad, Error Analysis of Flow Experiments, Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics, 2009.