References

  1. B. Hajalilou, M. Mosaferi, F. Khaleghi, S. Jadidi, B. Vosugh, E. Fatehifar, Effects of abandoned arsenic mine on water resources pollution in north west of iran, Health Promot. Perspect., 1 (2011) 62–70.
  2. M. Malakootian, K. Yaghmaeian, M. Malakootian, Wood ash effectiveness in cadmium removal from paint industrial effluent, Pak. J. Biol. Sci., 9 (2006) 248–252.
  3. L. Fan, X. Zhou, H. Luo, J. Deng, L. Dai, Z. Ju, Z. Zhu, L. Zou, L. Ji, B. Li, L. Cheng, Release of heavy metals from the pyrite tailings of Huangjiagou pyrite mine: batch experiments, Sustainability, 8 (2016) 1–13.
  4. Z. Stepniewska, A. Pytlak, J. Buk, G. Bojarczuk, Leachability of heasvy metals (Fe, Zn and Ni) from coal mine rocks, Proc. ECOpole, 4 (2010) 279–284.
  5. M.R. Shayestehfar, Assessment of pollution and distribution of heavy metals in sediments of sarcheshmeh copper mine, Iran. J. Min. Eng., 6 (2011) 25–34.
  6. J.M. Rousch, T.W. Simmons, B.L. Kerans, B.P. Smith, Relative acute effects of low pH and high iron on the hatching and survival of the water mite (Arrenurus manubriator) and the aquatic insect (Chironomus riparius), Environ. Toxicol. Chem., 16 (1997) 2144–2150.
  7. M. Jopony, F. Tongkul, Acid mine drainages at mamut copper mine, Sabah, Malaysia, Borneo Sci., 24 (2009) 83–94.
  8. M. Mushtaq, H.N. Bhatti, M. Iqbal, S. Noreen, Eriobotrya japonica seed biocomposite efficiency for copper adsorption: isotherms, kinetics, thermodynamic and desorption studies, J. Environ. Manage., 176 (2016) 21–33.
  9. S. Veli, B. Alyuz, Adsorption of copper and zinc from aqueous solutions by using natural clay, J. Hazard. Mater., 149 (2007) 226–233.
  10. A. Maicaneanu, H. Bedelean, M. Ardelean, S. Burca, M. Stanca, Haneş and Valea Vinului (Romania) closed mines acid mine drainages (AMDs) – actual condition and passive treatment remediation proposal, Chemosphere, 93 (2013) 1400–1405.
  11. T.V. Silas, O. Olawale, O. Ikechukwu, N. Emmanuel, Adsorption isotherm and kinetic studies of Cd (II) and Pb (II) ions bioremediation from aqueous solution using unmodified Bambara groundnut husk (Vigna Subterranean), AASCIT J. Environ., 2 (2017) 21–29.
  12. K. Ahmad, I.A. Bhatti, M. Muneer, M. Iqbal, Z. Iqbal, Removal of heavy metals (Zn, Cr, Pb, Cd, Cu and Fe) in aqueous media by calcium carbonate as an adsorbent, Int. J. Chem. Biochem. Sci., 2 (2012) 48–53.
  13. D. Uzunoğlu, A. Özer, Adsorption of hazardous heavy metal copper(II) from aqueous effluents onto waste material fish (Dicentrarchus labrax) scales: optimization, equilibrium, kinetics, thermodynamic, and characterization studies, Desal. Wat. Treat., 57 (2016) 22794–22798.
  14. P.P. Prabhu, B. Prabhu, A review on removal of heavy metal ions from waste water using natural/modified bentonite, MATEC Web of Conferences, 2018, p. 13.1.
  15. P. Mishra, P.S.C. Babu, Improvement of geotechnical properties of red soil using waste plastic, Int. J. Eng. Trends Technol., 48 (2017) 368–373.
  16. A. Esmaeili, S. Naseri, A.H. Mahvi, Copper and nickel removal from aqueous solutions by volcanic ash soil, Hormozgan Med. J., 8 (2003) 33–39.
  17. D. Feng, J.S.J. Van Deventer, C. Aldrich, Removal of pollutants from acid mine wastewater using metallurgical by-product slags, Sep. Purif. Technol., 40 (2004) 61–67.
  18. M. Gitari, L. Petrik, O. Etchebers, D. Key, E. Iwuoha, C. Okujeni, Treatment of acid mine drainage with fly ash: removal of major contaminants and trace elements, J. Environ. Sci. Health. A Tox./ Hazard. Subst. Environ. Eng., 41 (2006) 1729–1747.
  19. M.A. Stylianou, V.J. Inglezakis, K.G. Moustakas, S.P. Malamis, M.D. Loizidou, Removal of Cu(II) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents, Desalination, 215 (2007) 133–142.
  20. C.A. Ríos, C.D. Williams, C.L. Roberts, Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites, J. Hazard. Mater., 156 (2008) 23–35.
  21. B. Calvo, L. Canoira, F. Morante, J.M. Martínez-Bedia, C. Vinagre, J.E. García-González, J. Elsen, R. Alcantara, Continuous elimination of Pb2+, Cu2+, Zn2+, H+ and NH4+ from acidic waters by ionic exchange on natural zeolites, J. Hazard. Mater., 166 (2009) 619–627.
  22. M. Malakootian, J. Nouri, H. Hossaini, Removal of heavy metals from paint industry‘s wastewater using Leca as an available adsorbent, Int. J. Environ. Sci. Technol., 6 (2009) 183–190.
  23. R. Egashira, S. Tanabe, H. Habaki, Adsorption of heavy metals in mine wastewater by Mongolian natural zeolite, Procedia Eng., 42 (2012) 49–57.
  24. S. Tamoto, Y. Ito, T. Igarashi, Effectiveness of adsorption layer using natural volcanic ash in reducing arsenic leached from mudstone, Abstract: in: 11th Int. Conf. Mining, Mater. Pet. Eng. 7th Int. Conf. Earth Resour. Technol., 2013, pp. 13–17. doi: Paper ID 41.
  25. G. Qian, R.C. Schumann, J. Li, M.D. Short, R. Fan, Y. Li, N. Kawashima, Y. Zhou, R.S.C. Smart, A.R. Gerson, Strategies for reduced acid and metalliferous drainage by pyrite surface passivation, Minerals, 7 (2017) 1–15.
  26. H. Xiyili, S. Çetintaş, D. Bingöl, Removal of some heavy metals onto mechanically activated fly ash: modeling approach for optimization, isotherms, kinetics and thermodynamics, Process Saf. Environ. Prot., 109 (2017) 288–300.
  27. J.C. Echeverria, M.T. Morera, C. Mazkiaran, J.J. Garrido, Competitive sorption of heavy metal by soils. Isotherm and fractional factorial experiments, Environ. Pollut., 101 (1998) 275–284.
  28. T. Mathialagan, T. Viraraghavan, Adsorption of cadmium from aqueous solutions by vermiculite, Sep. Sci. Technol., 38 (2003) 57–76.
  29. J. Kovács, B. Raucsik, A. Varga, G. Újvári, G. Varga, F. Ottner, Clay mineralogy of red clay deposits from the central Carpathian Basin (Hungary): implications for Plio-Pleistocene chemical weathering and palaeoclimate, Turkish J. Earth Sci., 22 (2013) 414–426.
  30. J. Cao, H. Cao, Y. Zhu, S. Wang, D. Qian, G. Chen, M. Sun, W. Huang, Rapid and effective removal of Cu2+ from aqueous solution using novel chitosan and laponite-based nanocomposite as adsorbent, Polymers (Basel), 9 (2016) 5.
  31. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  32. N.A. Oladoja, C.O. Aboluwoye, Y.B. Oladimeji, Kinetics and isotherm studies on methylene blue adsorption, Turk. J. Eng. Environ. Sci., 32 (2008) 303–312.
  33. S. Rout, A. Kumar, P.M. Ravi, R.M. Tripathi, P.M. Ravi, R.M. Tripathi, Pseudo-second-order kinetic model for the sorption of U(VI) onto soil: a comparison of linear and nonlinear methods, Int. J. Environ. Sci., 6 (2015) 145–154.
  34. B.B.F. Asadsa ngabi, M.R. Sangi, Study of thermodynamic parameters in adsorption of lead copper and cadmium metal ions by plant sorbentse, Civ. Environ. Eng., 47 (2015) 5–8.
  35. APHA, Standard Methods for Examination of Water and Wastewater (Standard Methods for the Examination of Water and Wastewater), 1998.
  36. F.A. Dawodu, K.G. Akpomie, Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay, J. Mater. Res. Technol., 3 (2014) 129–141.
  37. R.K. Vempati, M.Y.A. Mollah, G.R. Reddy, D.L. Cocke, H.V. Lauer, Intercalation of kaolinite under hydrothermal conditions, J. Mater. Sci., 31 (1996) 1255–1259.
  38. A. Njoya, Genesis of Mayouom kaolin deposit, Appl. Clay Sci., 32 (2006) 125–140.
  39. N. Samadani, E. Tajari, Adsorption of manganese ions (II) from drinking water using a mixture of natural adsorbents, Appl. Res. Chem., 11 (2016) 49–57.
  40. A. Petrilakova, M. Balintova, M. Holub, Precipitation of heavy metals from acid mine drainage and their geochemical modeling, Sel. Sci. Pap. - J. Civ. Eng., 9 (2014) 79–86.
  41. H.A.M. Bennour, Influence of pH and ionic strength on the adsorption of copper and zinc in bentonite clay, Chem. Sci. Trans., 1 (2012) 371–381.
  42. M.R. Lasheen, I.Y. El-Sherif, S.T. El-Wakeel, D.Y. Sabry, M.F. El-Shahat, Heavy metals removal from aqueous solution using magnetite Dowex 50WX4 resin nanocomposite, J. Mater. Environ. Sci., 8 (2017) 503–511.
  43. A.Y.W. Lee, S.F. Lim, S.N.D. Chua, K. Sanaullah, R. Baini, M.O. Abdullah, Adsorption equilibrium for heavy metal divalent ions (Cu2+, Zn2+, and Cd2+) into zirconium-based ferromagnetic sorbent, Adv. Mater. Sci. Eng., 2017 (2017) 1–13.
  44. T.K. Sen, C. Khoo, Adsorption characteristics of zinc (Zn2+) from aqueous solution by natural bentonite and kaolin clay minerals: a comparative study, Comput. Water, Energy, Environ. Eng., 2 (2013) 1–6.
  45. F. Arias, T.K. Sen, Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: a kinetic and equilibrium study, Colloids Surf. A Physicochem. Eng. Asp., 348 (2009) 9.
  46. V. Sareh, Sorption behavior of dissolved copper ions from industrial wastewater by corncob powder, New Prod. Mag., 4 (2013) 35–46.
  47. A.A. Nuhu, I.C.P. Omali, O.C. Clifford, Adsorption efficiency and equilibrium study of Melaleucaleucadendron husk in the removal of Cu2+ And Cd2+ ions from aqueous solution, Am. J. Eng. Res., 7 (2018) 253–268.
  48. G. Karthikeyan, K. Anbalagan, N.M. Andal, Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan, J. Chem. Sci., 116 (2004) 119–127.
  49. S. Battacharyya, A. Tenuv, Soil properties affecting adsorption, World News Nat. Sci., 9 (2017) 19–34.
  50. M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics, J. Hazard. Mater., 141 (2007) 77–85.
  51. T.K. Sen, S.P. Mahajan, K.C. Khilar, Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+2+ transport in porous media, Colloids Surf. A Physicochem. Eng. Asp., 211 (2002) 91–102.
  52. V.J. Inglezakis, M.D. Loizidou, H.P. Grigoropoulou, Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: Selectivity determination and influence of acidity on metal uptake, J. Colloid Interface Sci., 261 (2003) 49–54.
  53. S. Larous, A.-H. Meniai, M.B. Lehocine, Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust, Desalination, 185 (2005) 483–490.
  54. N.Y. Dho, S.R. Lee, Effect of temperature on single and competitive adsorptions of Cu(II) and Zn(II) onto natural clays, Environ. Monit. Assess., 83 (2003) 177–203.
  55. S.T. Xing, M.Q. Zhao, Z.C. Ma, Removal of heavy metal ions from aqueous solution using red loess as an adsorbent, J. Environ. Sci., 23 (2011) 1497–1502.
  56. S.-F. Lim, A.Y.W. Lee, Kinetic study on removal of heavy metal ions from aqueous solution by using soil, Environ. Sci. Pollut. Res., 22 (2015) 10144–10158.
  57. Z. Melichová, L. Hromada, Adsorption of Pb2+ and Cu2+ ions from aqueous solutions on natural bentonite, Pol. J. Environ. Stud., 22 (2013) 457–464.
  58. J.L. Vega, J. Ayala, J. Loredo, J.G. Iglesias, Bentonites as adsorbents of heavy metals ions from mine waste leachates: experimental data, in: 9th Int. Mine Water Congr., 2005, pp. 603–609.
  59. A.T. Sdiri, T. Higashi, F. Jamoussi, Adsorption of copper and zinc onto natural clay in single and binary systems, Int. J. Environ. Sci. Technol., 11 (2014) 1081–1092.
  60. J. Yin, C. Deng, Z. Yu, X. Wang, G. Xu, Effective Removal of lead ions from aqueous solution using nano illite/smectite clay: isotherm, kinetic, and thermodynamic modeling of adsorption, Water, 10 (2018) 210.
  61. Y. Refaey, Characterization of clay deposits from Egypt and assessment of their potential application for waste water treatment: how dissolved organic matter determines the interaction of heavy metals and clay minerals, 2016, pp. 4–155.