References

  1. United Nations Millennium Development Goals, (n.d.). Available at http://www.un.org/millenniumgoals/ (Accessed 4 September 2018).
  2. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  3. J.E. Cadotte, R.S. King, R.J. Majerle, R.J. Petersen, Interfacial synthesis in the preparation of reverse osmosis membranes, J. Macromol. Sci. Part A Chem., 15 (1981) 727–755.
  4. E.W. Tow, M.M. Rencken, J.H. Lienhard, In situ visualization of organic fouling and cleaning mechanisms in reverse osmosis and forward osmosis, Desalination, 399 (2016) 138–147.
  5. M. Monruedee, S. Sarp, Y.G. Lee, J.H. Kim, Time-series image analysis for investigating SWRO fouling mechanism, Desal. Wat. Treat., 43 (2012) 212–220.
  6. M. Ding, A. Ghoufi, A. Szymczyk, Molecular simulations of polyamide reverse osmosis membranes, Desalination, 343 (2014) 48–53.
  7. M. Ding, A. Szymczyk, F. Goujon, A. Soldera, A. Ghoufi, Structure and dynamics of water confined in a polyamide reverse-osmosis membrane: a molecular-simulation study, J. Membr. Sci., 458 (2014) 236–244.
  8. M.E. Suk, A.V. Raghunathan, N.R. Aluru, Fast reverse osmosis using boron nitride and carbon nanotubes, Appl. Phys. Lett., 92 (2008) 133120.
  9. M.E. Suk, N.R. Aluru, Water transport through ultrathin graphene, J. Phys. Chem. Lett., 1 (2010) 1590–1594.
  10. Y.M. Kim, H. Ebro, J.H. Kim, Molecular dynamics simulation of seawater reverse osmosis desalination using carbon nanotube membranes, Desal. Wat. Treat., 57 (2016) 20169–20176.
  11. H. Ebro, Y.M. Kim, J.H. Kim, Molecular dynamics simulations in membrane-based water treatment processes: a systematic overview, J. Membr. Sci., 438 (2013) 112–125.
  12. B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B, 112 (2008) 1427–1434.
  13. D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett., 12 (2012) 3602–3608.
  14. M.J. Kotelyanskii, N.J. Wagner, M.E. Paulaitis, Atomistic simulation of water and salt transport in the reverse osmosis membrane FT-30, J. Membr. Sci., 139 (1998) 1–16.
  15. M.J. Kotelyanskii, N.J. Wagner, M.E. Paulaitis, Molecular dynamics simulation study of the mechanisms of water diffusion in a hydrated, amorphous polyamide, Comput. Theor. Polym. Sci., 9 (1999) 301–306.
  16. E. Harder, D.E. Walters, Y.D. Bodnar, R.S. Faibish, B. Roux, Molecular dynamics study of a polymeric reverse osmosis membrane, J. Phys. Chem. B, 113 (2009) 10177–10182.
  17. Z.E. Hughes, J.D. Gale, A computational investigation of the properties of a reverse osmosis membrane, J. Mater. Chem., 20 (2010) 7788.
  18. Y. Luo, E. Harder, R.S. Faibish, B. Roux, Computer simulations of water flux and salt permeability of the reverse osmosis FT-30 aromatic polyamide membrane, J. Membr. Sci., 384 (2011) 1–9.
  19. Z.E. Hughes, J.D. Gale, Molecular dynamics simulations of the interactions of potential foulant molecules and a reverse osmosis membrane, J. Mater. Chem., 22 (2012) 175–184.
  20. C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry, Desalination, 242 (2009) 149–167.
  21. C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Probing the nano- and micro-scales of reverse osmosis membranes—a comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements, J. Membr. Sci., 287 (2007) 146–156.
  22. O. Coronell, B.J. Mariñas, D.G. Cahill, Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes, Environ. Sci. Technol., 45 (2011) 4513–4520.
  23. B. Mi, O. Coronell, B.J. Marinas, F. Watanabe, D.G. Cahill, I. Petrov, Physico-chemical characterization of NF/RO membrane active layers by Rutherford backscattering spectrometry, J. Membr. Sci., 282 (2006) 71–81.
  24. V.T. Do, C.Y. Tang, M. Reinhard, J.O. Leckie, Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite, Environ. Sci. Technol., 46 (2012) 852–859.
  25. M. Ding, A. Szymczyk, A. Ghoufi, Hydration of a polyamide reverse-osmosis membrane, J. Membr. Sci., 501 (2016) 248–253.
  26. Y. Xiang, Y. Liu, B. Mi, Y. Leng, Hydrated polyamide membrane and its interaction with alginate: a molecular dynamics study, Langmuir, 29 (2013) 11600–11608.
  27. Y. Xiang, Y. Liu, B. Mi, Y. Leng, Molecular dynamics simulations of polyamide membrane, calcium alginate gel, and their interactions in aqueous solution, Langmuir, 30 (2014) 9098–9106.
  28. gnu.org, (n.d.). Available at: https://www.gnu.org/licenses/gpl-3.0.en.html (Accessed 6 September 2018).
  29. A.D. Bochevarov, E. Harder, T.F. Hughes, J.R. Greenwood, D.A. Braden, D.M. Philipp, D. Rinaldo, M.D. Halls, J. Zhang, R.A. Friesner, Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences, Int. J. Quant. Chem., 113 (2013) 2110–2142.
  30. H.B. Schlegel, Geometry optimization, Wiley Interdiscip. Rev.: Comp. Mol. Sci., 1 (2011) 790–809.
  31. R. Salomon-Ferrer, D.A. Case, R.C. Walker, An overview of the Amber biomolecular simulation package, Wiley Interdiscip. Rev.: Comp. Mol. Sci., 3 (2013) 198–210.
  32. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs, J. Comp. Chem., 26 (2005) 1668–1688.
  33. W.J. Mortier, K. Van Genechten, J. Gasteiger, Electronegativity equalization: application and parametrization, J. Am. Chem. Soc., 107 (1985) 829–835.
  34. J. Gasteiger, M. Marsili, Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges, Tetrahedron, 36 (1980) 3219–3228.
  35. A.I. Jewett, Z. Zhuang, J.-E. Shea, Moltemplate a coarsegrained model assembly tool, Biophys. J., 104 (2013) 169A. doi: doi:10.1016/j.bpj.2012.11.953.
  36. W. Gao, F. She, J. Zhang, L.F. Dumée, L. He, P.D. Hodgson, L. Kong, Understanding water and ion transport behaviour and permeability through poly(amide) thin film composite membrane, J. Membr. Sci., 487 (2015) 32–39.
  37. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117 (1995) 1–19. doi: doi:10.1006/ jcph.1995.1039.
  38. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 2009.
  39. A.Y. Toukmaji, J.A. Board, Ewald summation techniques in perspective: a survey, Comput. Phys. Commun., 95 (1996) 73–92.
  40. J.W. Eastwood, R.W. Hockney, D.N. Lawrence, P3M3DP—the three-dimensional periodic particle-particle/particle-mesh program, Comput. Phys. Commun., 19 (1980) 215–261.
  41. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field, J. Comput. Chem., 25 (2004) 1157–1174.
  42. T. Schneider, E.P. Stoll, Molecular-dynamics study of a threedimensional one-component model for distortive phasetransitions, Phys. Rev. B, 17 (1978) 1302–1322.
  43. I.J. Roh, A.R. Greenberg, V.P. Khare, Synthesis and characterization of interfacially polymerized polyamide thin films, Desalination, 191 (2006) 279–290.
  44. M. Ding, A. Szymczyk, A. Ghoufi, On the structure and rejection of ions by a polyamide membrane in pressure-driven molecular dynamics simulations, Desalination, 368 (2015) 76–80.
  45. G.-Y. Chai, W.B. Krantz, Formation and characterization of polyamide membranes via interfacial polymerization, J. Membr. Sci., 93 (1994) 175–192.
  46. R.W. Baker, Membrane Technology and Applications, 3rd ed, John Wiley & Sons, Chichester, West Sussex, Hoboken, 2012.
  47. S.H. Kim, S.Y. Kwak, T. Suzuki, Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane, Environ. Sci. Technol., 39 (2005) 1764–1770.
  48. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph., 14 (1996) 33–38.
  49. LAMMPS documentation. Available at: https://lammps.sandia.gov/doc/Manual.html.