References

  1. A. Ramdani, S. Taleb, A. Benghalem, N. Ghaffour, Removal of excess fluoride ions from Saharan brackish water by adsorption on natural materials, Desalination, 250 (2010) 408–413.
  2. V.K. Gupta, I. Ali, Environmental Water: Advances In Treatment, Remediation and Recycling, Elsevier, The Netherlands, 2012.
  3. T. Rafique, S. Naseem, T.H. Usmani, E. Bashir, F.A. Khan, M.I. Bhanger, Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan, J. Hazard. Mater., 171 (2009) 424–430.
  4. K. Brindha, R. Rajesh, R. Murugan, L. Elango, Fluoride contamination in groundwater in parts of Nalgonda district, Andhra Pradesh, Environ. Monit. Assess., 172 (2011) 481–492.
  5. V. Tomar, D. Kumar, A critical study on efficiency of different materials for fluoride removal from aqueous media, Chem. Cent. J., 7 (2013) 1–51.
  6. S. Karmakar, J. Mukherjee, S. Mukherjee, Removal of fluoride contamination in water by three aquatic plants, Int. J. Phytorem., 18 (2015) 222–227.
  7. S. Sinha, R. Saxena, S. Singh, Fluoride removal from water by Hydrilla verticillata (l.f.) royle and its toxic effects, Bull. Environ. Contam. Toxicol., 65 (2000) 683–690.
  8. M. Baunthiyal, S. Ranghar, Accumulation of fluoride by plants: potential for phytoremediation, Clean Soil Air Water, 43 (2015) 127–132.
  9. P. Pinskwar, M. Jezierska-Madziar, H. Goldyn, E. Arczynska-Chudy, J. Golski, Fluorine content of two submerged plant species in four Warta River oxbow lake reservoir near Poznan, Poland, Fluoride, 39 (2006) 310–312.
  10. M. Jezierska-Madziar, P. Pinkskwar, Fluoride in common reeds (Phragmites australis) sampled from the old Warta reservoirs near Lubon and Radzewice, Poland, Fluoride, 36 (2003) 21–24.
  11. E.I. Reardon, Y.X. Wang, A limestone reactor for fluoride removal from wastewaters, Environ. Sci. Technol., 34 (2000) 3247–3253.
  12. I. Ali, Z.A. ALOthman, M.M. Sanagi, Green synthesis of iron nan-impregnated adsorbent for fast removal of fluoride from water, J. Mol. Liq., 211 (2015) 457–465.
  13. L. Gomez-Hortigueela, A.B. Pinar, J. Perez-Pariente, T. Sani, Y. Chebude, I. Diaz, Ion-exchange in natural zeolite stilbite and significance in defluoridation ability, Microporous Mesoporous Mater., 193 (2014) 93–102.
  14. W. Gong, J. Qu, R. Liu, H. Lan, Effect of aluminum fluoride complexation on fluoride removal by coagulation, Colloids Surf., A, 395 (2012) 88–93.
  15. P.I. Ndiaye, P. Moulin, L. Dominguez, J.C. Millet, F. Charbit, Removal of fluoride from electronic industrial effluent by RO membrane separation, Desalination, 173 (2005) 25–32.
  16. M.H. Dehghani, D. Sanaei, I. Ali, A. Bhatnagar, Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies, J. Mol. Liq., 215 (2016) 671–679.
  17. I. Ali, Z.A. AL-Othman, O.M.L. Alharbi, Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent, J. Mol. Liq., 2016 (218) 465–472.
  18. I. Ali, Z.A. AL-Othman, A. Alwarthan, Green synthesis of functionalized iron nanoparticles and molecular liquid phase adsorption of ametryn from water, J. Mol. Liq., 221 (2016) 1168–1174.
  19. I. Ali, Z.A. Al-Othman, A. Alwarthan, M. Asim, T.A. Khan, Removal of arsenic species from water by batch and column operations on bagasse fly ash, Environ. Sci. Pollut. Res., 21 (2014) 3218–3229.
  20. I. Ali, Z.A. AL-Othman, A. Alwarthan, Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water, J. Mol. Liq., 219 (2016) 858–864.
  21. K. Biswas, S.K. Saha, U.C. Ghosh, Adsorption of fluoride from aqueous solution by a synthetic iron(III)-aluminum(III) mixed oxide, Ind. Eng. Chem. Res., 46 (2007) 5346–5356.
  22. E.A. Burakova, T.P. Dyachkova, A.V. Rukhov, E.N. Tugolukov, E.V. Galunin, A.G. Tkachev, A.A. Basheer, I. Ali, Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation, J. Mol. Liq., 253 (2018) 340–346.
  23. I. Ali, O.M.L. Alharbi, Z.A. Alothman, A.Y. Badjah, A. Alwarthan, A.A. Basheer, Artificial neural network modelling of amido black dye sorption on iron composite nano material: kinetics and thermodynamics studies, J. Mol. Liq., 250 (2018) 1–8.
  24. I. Ali, Z.A. Alothman, A. Alwarthan, Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption, J. Mol. Liq., 236 (2017) 205–213.
  25. I. Ali, Z.A. AL-Othman, A. Alwarthan, Molecular uptake of congo red dye from water on iron composite nano particles, J. Mol. Liq., 224 (2016) 171–176.
  26. I. Ali, Z.A. AL-Othman, A. Alwarthan, Removal of secbumeton herbicide from water on composite nanoadsorbent, Desal. Wat. Treat., 57 (2016) 10409–10421.
  27. I. Ali, Z.A. AL-Othman, A. Alwarthan, Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nanoparticles, J. Mol. Liq., 441 (2017) 123–129.
  28. H. Li, X. Dong, E.B. da Silva, L.M. de Oliveria, Y. Chen, L.Q. Ma, Mechanisms of metal sorption by biochars: Biochar characteristics and modifications, Chemosphere, 178 (2017) 466–478.
  29. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 99 (2014) 19–33.
  30. E. Antunes, J. Schumann, G. Brodie, M.V. Jacob, P.A. Schneider, Biochar produced from biosolids using a sing-mode microwave: characterization and its potential for phosphorus removal, J. Environ. Manage., 196 (2017) 119–126.
  31. X. Guan, J. Zhou, N. Ma, X. Chen, J. Gao, R. Zhang, Studies on modified conditions of biochar and the mechanism for fluoride removal, Desal. Wat. Treat., 55 (2015) 440–447.
  32. L. Cui, Y. Quyang, Y. Chen, X. Zhu, W. Zhu, Removal of total nitrogen by Cyperus alternifolius from wastewaters in simulated vertical-flow constructed wetlands, Ecol. Eng., 35 (2009) 1271–1274.
  33. S. Thongtha, P. Teamkao, N. Boonapatcharoen, S. Tripetchkul, S. Techkarnjararuk, P. Thiravetyan, Phosphorus removal from domestic wastewater by Nelumbo nucifera Gaertn. and Cyperus alternifolius L., J. Environ. Manage., 137 (2014) 54–60.
  34. S.Y. Chu, J.B. Xiao, G.M. Tian, M.H. Wong, Preparation and characterization of activated carbon from aquatic macrophyte debris and its ability to adsorb anthraquinone dyes, J. Ind. Eng. Chem., 20 (2014) 3461–3455.
  35. H. Brix, Do macrophytes play a role in constructed treatment wetlands?, Water Sci. Technol., 35 (1997) 11–17.
  36. S. Ohga, D.J. Royse, Cultivation of Pleurotus eryngii on umbrella plant (Cyperus alternifolius) substrate, J. Wood Sci., 50 (2004) 466–469.
  37. L.P. Lingamdinne, J.K. Yang, Y.Y. Chang, J.R. Koduru, Lowcost magnetized Lonicera japonica flower biomass for the sorption removal of heavy metals, Hydrometallurgy, 165 (2016) 81–89.
  38. L. Liu, J. Sun, C. Cai, S. Wang, H. Pei, J. Zhang, Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation, Bioresour. Technol., 100 (2009) 5856–5871.
  39. K. Fu, Q. Yue, B. Gao, Y. Sun, Y. Wang, Q. Li, P. Zhao, Physicochemical and adsorptive properties of activated carbons from Arundo donax Linn utilizing different iron salts as activating agent, J. Taiwan Inst. Chem. Eng., 45 (2014) 3007–3015.
  40. X.Q. Wang, P. Wang, P. Ning, Y.X. Ma, F. Wang, X.L. Guo, Y. Lan, Adsorption of gaseous elemental mercury with activated carbon impregnated with ferric chloride, RSC Adv., 5 (2015) 24899–24907.
  41. K. Raveendran, A. Ganesh, Adsorption characteristics and pore-development of biomass-pyrolysis char, Fuel, 77 (1998) 769–781.
  42. B. Chen, Z. Chen, S. Lv, A novel magnetic biochar efficiently sorbs organic pollutants and phosphate, Bioresour. Technol., 102 (2011) 716–723.
  43. H. Liu, W. Liu, J. Zhang, C. Zhang, L. Ren, Y. Li, Removal of cephalexin from aqueous solutions by original and Cu(II)/ Fe(III) impregnated activated carbons developed from lotus stalks: kinetics and equilibrium studies, J. Hazard. Mater., 185 (2011) 1528–1535.
  44. L. Xiao, E. Bi, B. Du, X. Zhao, C. Xing, Surface characterization of maize-straw-derived biochars and their sorption performance for MTBE and benzene, Environ. Earth Sci., 71 (2014) 5195–5205.
  45. B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere, 76 (2009) 127–133.
  46. G.N. Kasozi, A.R. Zimmerman, P. Nkedi-Kizza, B. Gao, Catechol and humic acid sorption onto a range of laboratoryproduced black carbons (biochars), Environ. Sci. Technol., 44 (2010) 6189–6195.
  47. M. Uchimiya, L.H. Wartelle, T. Klasson, C.A. Fortier, I.M. Lima, Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil, J. Agric. Food. Chem., 59 (2011) 2501–2510.
  48. R.A. Brown, A.K. Kercher, T.H. Nguyen, D.C. Nagle, W.P. Ball, Production and characterization of synthetic wood chars for use as surrogates for natural sorbents, Org. Geochem., 37 (2006) 321–333.
  49. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86 (2007) 1781–1788.
  50. T. Garcia, R. Murillo, D. Cazorla-Amoros, A.M. Mastral, A. Linares-Solano, Role of the activated carbon surface chemistry in the adsorption of phenanthrene, Carbon, 42 (2004) 1683–1689.
  51. P.R. Bonelli, P.A. Della Rocca, E.G. Cerrella, A.L. Cukierman, Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil nut shell, Bioresour. Technol., 76 (2001) 15–22.
  52. A. Rathinam, J.R. Rao, B.U. Nair, Adsorption of phenol onto activated carbon from seaweed: determination of the optimal experimental parameters using factorial design, J. Taiwan Inst. Chem. Eng., 42 (2011) 952–956.
  53. H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon, 40 (2002) 145–149.
  54. A.O.A. Tuna, E. Ozdemir, E.B. Simsek, U. Beker, Optimization of process parameters for removal of arsenic using activated carbon-based iron-containing adsorbents by response surface methodology, Water Air Soil Pollut., 224 (2013) 1685.
  55. H. Liu, P. Dai, J. Zhang, C. Zhang, N. Bao, C. Cheng, L. Ren, Preparation and evaluation of activated carbons from lotus stalk with trimethyl phosphate and tributyl phosphate activation for lead removal, Chem. Eng. J., 228 (2013) 425–434.
  56. A. Sivasamy, K.P. Singh, D. Mohan, M. Maruthamuthu, Studies on defluoridation of water by coal-based sorbents, J. Chem. Technol. Biotechnol., 76 (2001) 717–722.
  57. M. Streat, K. Hellgardt, N.L.R. Newton, Hydrous ferric oxide as an adsorbent in water treatment: part 3: batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions, Process Saf. Environ. Prot., 86 (2008) 21–30.
  58. C. Gago, A. Romar, M.L. Fernandez-Marcos, E. Alvarez, Fluorine sorption by soils developed from various parent materials in Galicia (NW Spain), J. Colloid Interface Sci., 374 (2012) 232–236.
  59. Y. Ma, S.G. Wang, M. Fan, W.X. Gong, B.Y. Gao, Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides, J. Hazard. Mater., 168 (2009) 1140–1146.
  60. L. Xu, G. Chen, C. Peng, H. Qiao, F. Ke, R. Hou, D. Li, H. Cai, X. Wan, Adsorptive removal of fluoride from drinking water using porous starch loaded with common metal ions, Carbohydr. Polym., 160 (2017) 82–89.
  61. B.R. Vilakati, V. Sivasankar, E.N. Nxumalo, B.B. Mamba, K. Omine, T.A.M. Msagati, Fluoride removal studies using virgin and Ti (IV)-modified Musa paradisiaca (plantain pseudo-stem) carbons, Environ. Sci. Pollut. Res., (2018). https://doi.org/10.1007/s11356-018-2691-x.