References

  1. T. Matsuura, Progress in membrane science and technology for seawater desalination—a review, Desalination, 134 (2001) 47–54.
  2. B.V. der Bruggen, Desalination by distillation and by reverse osmosis—trends towards the future, Membr. Technol., 2 (2003) 6–9.
  3. D. Li, H. Wang, Recent developments in reverse osmosis desalination membranes, J. Mater. Chem., 20 (2010) 4551–4566.
  4. L.M. Fry, J.R. Mihelcic, D.W. Watkins, Water and nonwaterrelated challenges of achieving global sanitation coverage, Environ. Sci. Technol., 42 (2008) 4298–4304.
  5. C.S. Slater, R.C. Ahlert, C.G. Uchrin, Applications of reverse osmosis to complexindustrial wastewater treatment, Desalination, 48 (1983) 171.
  6. D. Bhattacharyya, M. Jevtitch, J.K. Ghosal, J. Kozminsky, Reverse osmosis membrane for treating coal-liquefaction wastewater, Environ. Prog. Sustainable Energy, 3 (1984) 95.
  7. B.H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes, J. Membr. Sci., 294 (2007) 1–7.
  8. N. Niksefat, M. Jahanshahi, A. Rahimpour, The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application, Desalination, 343 (2014) 140–146.
  9. L. Liu, G. Zhu, Z. Liu, C. Gao, Effect of MCM-48 nanoparticles on the performance of thin film nanocomposite membranes for reverse osmosis application, Desalination, 394 (2016) 72–82.
  10. H.J. Kim, M.Y. Lim, K.H. Jung, D.G. Kim, J.C. Lee, Highperformance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides, J. Mater. Chem. A, 3 (2014) 6798–6809.
  11. R. Cruz-Silva, S. Inukai, T. Araki, A. Morelos-Gomez, High performance and chlorine resistant carbon nanotube/aromatic polyamide reverse osmosis nanocomposite membrane, MRS Adv., 1 (2016) 1469–1476.
  12. E.S. Kim, B. Deng, Fabrication of polyamide thin-film nanocomposite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications, J. Membr. Sci., 375 (2011) 46–54.
  13. H. Dong, L. Zhao, L. Zhang, H. Chen, C. Gao, High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination, J. Membr. Sci., 476 (2015) 373–383.
  14. J. Duan, Y. Pan, F. Pacheco, E. Litwiller, Z. Lai, I. Pinnau, Highperformance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeoliticimidazolate framework-8, J. Membr. Sci., 476 (2015) 303–310.
  15. M. Bao, G. Zhu, L. Wang, M. Wang, C. Gao, Preparation of monodispersed spherical mesoporous nanosilica–polyamide thin film composite reverse osmosis membranes via interfacial polymerization, Desalination, 309 (2013) 261–266.
  16. C. Kong, M. Kanezashi, T. Yamomoto, T. Shintani, T. Tsuru, Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination, J. Membr. Sci., 362 (2010) 76–80.
  17. C. Kong, T. Shintani, T. Kamada, V. Freger, T. Tsuru, Co-solventmediated synthesis of thin polyamide membranes, J. Membr. Sci., 384 (2011) 10–16.
  18. T. Kamada, T. Ohara, T. Shintani, T. Tsuru, Optimizing the preparation of multi-layered polyamide membrane via the addition of a co-solvent, J. Membr. Sci., 453 (2014) 489–497.
  19. T. Kamada, T. Ohara, T. Shintani, T. Tsuru, Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux, J. Membr. Sci., 467 (2014) 303–312.
  20. Z. Liu, G. Zhu, Y. Wei, D. Zhang, J. Lei, H. Wang, C. Gao, Enhanced flux performance of polyamide composite membranes prepared via interfacial polymerization assisted with ethyl formate, Water Sci. Technol., 76 (2017) 1884–1894.
  21. X. Liu, Y. Peng, S. Ji, A new method to prepare organic–inorganic hybrid membranes, Desalination, 221 (2008) 376–382.
  22. C.C. Yang, Y.J. Li, T.H. Liou, Preparation of novel poly (vinyl alcohol)/SiO2 nanocomposite membranes by a sol–gel process and their application on alkaline DMFCs, Desalination, 276 (2011) 366–372.
  23. A. Ananth, G. Arthanareeswaran, H. Wang, The influence of tetraethylorthosilicate and polyethyleneimine on the performance of polyethersulfone membranes, Desalination, 287 (2012) 61–70.
  24. A. Ananth, G. Arthanareeswaran, Y.S. Mok, Effects of in situ and ex situformations of silica nanoparticles on polyethersulfone membranes, Polym. Bull., 71 (2014) 2851–2861.
  25. H.P. Xu, Y.H. Yu, W.Z. Lang, X. Yan, Y.J. Guo, Hydrophilic modification of polyvinyl chloride hollow fiber membranes by silica with a weak in situ sol-gel method, RSC Adv., 5 (2015) 13733–13742.
  26. L. Wu, J. Sun, Z. Lv, Y. Chen, In-situ preparation of poly(ether imide)/aminofunctionalized silica mixed matrix membranes for application in enzyme separation, Mater. Des., 92 (2016) 610–620.
  27. M. Shafiqa, A. Sabira, A. Islama, S.M. Khana, S.N. Hussainb, M.T.Z.Z. Buttc, T. Jamila, Development and performance characteristics of silane crosslinked poly (vinyl alcohol)/ chitosan membranes for reverse osmosis, J. Ind. Eng. Chem., 48 (2017) 99–107.
  28. G. Gong, J. Wang, H. Nagasawa, M. Kanezashi, T. Yoshioka, T. Tsuru, Fabrication of a layered hybrid membrane using an organosilica separation layer on a porous polysulfone support, and the application to vapor permeation, J. Membr. Sci., 464 (2014) 140–148.
  29. G. Gong, J. Wang, H. Nagasawa, M. Kanezashi, T. Yoshioka,T. Tsuru, Synthesis and characterization of a layeredhybrid membrane consisting of an organosilica separation layer on a polymeric nanofiltration membrane, J. Membr. Sci., 472 (2014) 19–28.
  30. C.L. Kong, A. Koushima, T. Kamada, T. Shintani, M. Kanezashi, T. Yosh-ioka, T. Tsuru, Enhanced performance of inorganicpolyamide nanocomposite membranes prepared by metalalkoxide-assisted interfacial polymerization, J. Membr. Sci., 366 (2011) 382–388.
  31. W. Ding, Y. Li, M. Bao, J. Zhang, C. Zhang, J. Lu, Highly permeable and stable forward osmosis (FO) membrane based on the incorporation of Al2O3 nanoparticles into both substrate and polyamide active layer. RSC Adv., 7 (2017) 40311–40320.
  32. S.Y. Kwak, S.G. Jung, S.H. Kim, Structure–motion–performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films, Environ. Sci. Technol., 35 (2001) 4334–4340.
  33. A. Peyki, A. Rahimpour, M. Jahanshahi, Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic SiO2 nanoparticles, Desalination, 368 (2015) 152–158.
  34. W. Ding, H. Zhuo, M. Bao, Y. Li, J. Lu, Fabrication of organicinorganic nanofiltration membrane using ordered stacking SiO2 thin film as rejection layer assisted with layer-by-layer method, Chem. Eng. J., 330 (2017) 337–344.
  35. K.A. Ghosh, B.H. Jeong, X. Huang, E.M.V. Hoek, Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties, J. Membr. Sci., 311 (2008) 34–45.
  36. C.K. Kim, J.H. Kim, I.J. Roh, J.J. Kim, The changes of membrane performance with polyamide molecular structure in the reverse osmosis process, J. Membr. Sci., 165 (2000) 189–199.
  37. S.H. Kim, S.Y. Kwak, T. Suzuki, Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology controlled thin-film-composite (TFC) membrane, Environ. Sci. Technol., 39 (2005) 1764–1770.
  38. S.Y. Kwak, D.W. Ihm, Use of atomic force microscopy and solid-state NMR spectroscopy to characterize structureproperty- performance correlation in high-flux reverse osmosis (RO) membranes, J. Membr. Sci., 158 (1999) 143–153.
  39. V. Freger, Kinetics of film formation by interfacial polycondensation, Langmuir, 21 (2005) 1884–1894.