References

  1. A.R.A. Aziz, P. Asaithambi, W.M.A.B.W. Daud, Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent, Process. Saf. Environ. Prot., 99 (2016) 227–235.
  2. M.A. Hassaan, A. El Nemr, F.F. Madkour, Advanced oxidation processes of Mordant Violet 40 dye in freshwater and seawater, Egypt. J. Aquat. Res., 43 (2017) 1–9.
  3. S.K. Sen, S. Raut, P. Bandyopadhyay, S. Raut, Fungal decolouration and degradation of azo dyes: a review, Fungal. Biol. Rev., 30 (2016) 112–133.
  4. O.R.S. da Rocha, R.F. Dantas, M.M.M.B. Duarte, M.M.L. Duarte, V.L. da Silva, Oil sludge treatment by photocatalysis applying black and white light, Chem. Eng. J., 157 (2010) 80–85.
  5. A.K. Verma, Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode, J. Water. Process. Eng., 20 (2017) 168–172.
  6. A. Kumar, P.V Nidheesh, M.S. Kumar, Composite wastewater treatment by aerated electrocoagulation and modified peroxicoagulation processes, Chemosphere, 205 (2018) 587–593.
  7. T.W. Leal, L.A. Lourenço, A.S. Scheibe, S.M.A.G.U. De Souza, A.A.U. De Souza, Textile wastewater treatment using low-cost adsorbent aiming the water reuse in dyeing process, J. Environ. Chem. Eng., 6 (2018) 2705–2712.
  8. S. Wong, N. Atiqah, N. Yac, N. Ngadi, O. Hassan, I.M. Inuwa, From pollutant to solution of wastewater pollution: synthesis of activated carbon from textile sludge for dye adsorption, Chinese. J. Chem. Eng., 26 (2018) 870–878.
  9. A. Giwa, S. Chakraborty, M.O. Mavukkandy, H.A. Arafat, Nanoporous hollow fiber polyethersulfone membranes for the removal of residual contaminants from treated wastewater effluent : functional and molecular implications, Sep. Purif. Technol., 189 (2017) 20–31.
  10. J. Dasgupta, J. Sikder, S. Chakraborty, S. Curcio, E. Drioli, Remediation of textile effluents by membrane based treatment techniques: a state of the art review, J. Environ. Manage., 147 (2015) 55–72.
  11. G. Cinelli, F. Cuomo, L. Ambrosone, M. Colella, A. Ceglie, F. Venditti, F. Lopez, Photocatalytic degradation of a model textile dye using carbon-doped titanium dioxide and visible light, J. Water. Process. Eng., 20 (2017) 71–77.
  12. A.D. Bokare, W. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121–135.
  13. A. Asghar, A.A.A. Raman, W.M.A.W. Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review, J. Cleaner. Prod., 87 (2015) 826–838.
  14. M. Pourakbar, G. Moussavi, S. Shekoohiyan, Homogenous VUV advanced oxidation process for enhanced degradation and mineralization of antibiotics in contaminated water, Ecotoxicol. Environ. Saf., 125 (2016) 72–77.
  15. O. Rozas, C. Vidal, C. Baeza, W.F. Jardim, A. Rossner, H.D. Mansilla, Organic micropollutants (OMPs) in natural waters: oxidation by UV/H2O2 treatment and toxicity assessment, Water. Res., 98 (2016) 109–118.
  16. M.P. Rayaroth, U.K. Aravind, C.T. Aravindakumar, Sonochemical degradation of Coomassie Brilliant Blue: effect of frequency, power density, pH and various additives, Chemosphere, 119 (2015) 848–855.
  17. M. Bagheri, M. Mohseni, Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes, J. Environ. Manage., 164 (2015) 114–120.
  18. S. Marmitt, L.V. Pirotta, S. Stülp, Aplicação de fotólise direta e UV/H2O2 a efluente sintético contendo diferentes corantes alimentícios (in Portuguese), Quim. Nova., 33 (2010) 384–388.
  19. L.A.V. de Luna, T.H.G. da Silva, R.F.P. Nogueira, F. Kummrow, G.A. Umbuzeiro, Aquatic toxicity of dyes before and after photo-Fenton treatment, J. Hazard. Mater., 276 (2014) 332–338.
  20. A. Adak, K.P. Mangalgiri, J. Lee, L. Blaney, UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organoarsenicals, Water. Res., 70 (2015) 74–85.
  21. R.P. Cavalcante, R.F. Dantas, B. Bayarri, O. González, J. Giménez, S. Esplugas, A. Machulek, Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2 and TiO2 doped with 5% B: primary active species and intermediates, Appl. Catal. B. Environ., 194 (2016) 111–122.
  22. H. Dai, Y. Sun, P. Ni, W. Lu, S. Jiang, Y. Wang, Z. Li, Z. Li, Threedimensional TiO2 supported silver nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering, Sensor. Actuat. B. Chem., 242 (2017) 260–268.
  23. Y. Wang, S. Zhang, Y. Zeng, M. Ou, Q. Zhong, Photocatalytic oxidation of NO over TiO2-graphene catalyst by UV/H2O2 process and enhanced mechanism analysis, J. Mol. Catal. A: Chem., 423 (2016) 339–346.
  24. R. Willumeit, F. Feyerabend, N. Huber, Magnesium degradation as determined by artificial neural networks, Acta. Biomater., 9 (2013) 8722–8729.
  25. L. Das, U. Maity, J.K. Basu, The photocatalytic degradation of carbamazepine and prediction by artificial neural networks, Process. Saf. Environ. Prot., 92 (2013) 888–895.
  26. D.S. De Sá, L.E. Vasconcellos, J.R. De Souza, B.A. Marinkovic, T. Del Rosso, D. Fulvio, Intensification of photocatalytic degradation of organic dyes and phenol by scale-up and numbering-up of meso- and micro fluidic TiO2 reactors for wastewater treatment, J. Photochem. Photobiol. A. Chem., 364 (2018) 59–75.
  27. D.D. Phan, T.H.T. Trinh, F. Babick, M.T. Nguyen, W. Samhaber, M. Stintz, Investigation of fixed-bed photocatalytic membrane reactors based on submerged ceramic membranes, Chem. Eng. Sci., 191 (2018) 332–342.
  28. M.E. Leblebici, G.D. Stefanidis, T. Van Gerven, Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment, Chem. Eng. Process. Process. Intensif., 97 (2015) 106–111.
  29. H. Amiri, B. Ayati, H. Ganjidoust, Mass transfer phenomenon in photocatalytic cascade disc reactor: effects of artificial roughness and flow rate, Chem. Eng. Process. Process. Intensif., 116 (2017) 48–59.
  30. C.B. Ozkal, Z. Frontistis, M. Antonopoulou, I. Konstantinou, D. Mantzavinos, S. Meriç, Removal of antibiotics in a parallelplate thin-film-photocatalytic reactor: process modeling and evolution of transformation by-products and toxicity, J. Environ. Sci. (China)., 60 (2016) 114–122.
  31. K.O. Hamaloglu, E. Sag, A. Tuncel, Bare, gold and silver nanoparticle decorated, monodisperse-porous titania microbeads for photocatalytic dye degradation in a newly constructed microfluidic, photocatalytic packed-bed reactor, J. Photochem. Photobiol. A., 332 (2017) 60–65.
  32. A. Matilainen, M. Sillanpää, Removal of natural organic matter from drinking water by advanced oxidation processes, Chemosphere, 80 (2010) 351–365.
  33. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8 (2004) 501–551.
  34. S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Sep. Purif. Technol., 73 (2010) 71–91.
  35. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M. Hasnain Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review, J. Ind. Eng. Chem., 26 (2015) 1–36.
  36. F. Magalhães, R.M. Lago, Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes, Sol. Energy., 83 (2009) 1521–1526.
  37. A.L. De Barros, A.A.Q. Domingos, P.B.A. Fechine, D. De Keukeleire, R.F. Do Nascimento, PET as a support material for TiO2 in advanced oxidation processes, J. Appl. Polym. Sci., 131 (2014) 1–9.
  38. R. Ludwichk, O.K. Helferich, C.P. Kist, A.C. Lopes, T. Cavasotto, D.C. Silva, M. Barreto-Rodrigues, Characterization and photocatalytic treatability of red water from Brazilian TNT industry, J. Hazard. Mater., 293 (2015) 81–86.
  39. B. Erjavec, P. Hudoklin, K. Perc, T. Tišler, M.S. Dolenc, A. Pintar, Glass fiber-supported TiO2 photocatalyst: efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs, Appl. Catal. B., 183 (2016) 149–158.
  40. E. Topkaya, M. Konyar, H.C. Yatmaz, K. Öztürk, Pure ZnO and composite ZnO/TiO2 catalyst plates: a comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions, J. Colloid Interface Sci., 430 (2014) 6–11.
  41. S.C. Lenore, E.G. Arnold, D.E. Andrew, Standard Methods for the Examination of Water and Wastewater, 20th, New York, 1998.
  42. L. Wood, D.L. Tauc, Weak absorption tails in amorphous semiconductors, Phys. Rewiew. B., 5 (1972) 3144.
  43. W.J. Do Nascimento Júnior, O.R.S. da Rocha, R.F. Dantas, J.P. da Silva, A.A. Barbosa, Kinetic study of food dyes removal from aqueous solutions by solar heterogeneous photocatalysis with artificial neural networks and phytotoxicity assessment, Desal. Wat. Treat., 104 (2018) 304–314.
  44. J. Matos, A. García, L. Zhao, M. Magdalena, Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light, Appl Catal. A., 390 (2010) 175–182.
  45. S. Go, E. Oliveros, S.H. Bossmann, R. Guardani, C.A.O. Nascimento, Modeling the kinetics of a photochemical water treatment process by means of artificial neural networks, Chem. Eng. Process., 38 (1999) 373–382.
  46. J.A. Giroto, R. Guardani, A.C.S.C. Teixeira, C.A.O. Nascimento, Study on the photo-Fenton degradation of polyvinyl alcohol in aqueous solution, Chem. Eng. Process., 45 (2006) 523–532.
  47. R. Kennedy, J; Eberhart, Particle swarm optimization, in: IEEE Int. Conf., 1995.
  48. D. Wiedmer, E. Sagstuen, K. Welch, H.J. Haugen, H. Tiainen, Oxidative power of aqueous non-irradiated TiO2-H2O2 suspensions: methylene blue degradation and the role of reactive oxygen species, Appl. Catal. B. Environ., 198 (2016) 9–15.
  49. V.J.P. Vilar, L.X. Pinho, A.M.A. Pintor, R.A.R. Boaventura, Treatment of textile wastewaters by solar-driven advanced oxidation processes, Sol. Energy., 85 (2011) 1927–1934.
  50. Z.A.M. Hir, P. Moradihamedani, A.H. Abdullah, M.A. Mohamed, Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye, Mater. Sci. Semicond. Process., 57 (2017) 157–165.
  51. M.E. Borges, M. Sierra, E. Cuevas, R.D. García, P. Esparza, Photocatalysis with solar energy: sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment, Sol. Energy., 135 (2016) 527–535.
  52. M.E. Borges, M. Sierra, J. Méndez-Ramos, P. Acosta-Mora, J.C. Ruiz-Morales, P. Esparza, Solar degradation of contaminants in water: TiO2 solar photocatalysis assisted by up-conversion luminescent materials, Sol. Energy. Mater. Sol. Cells., 155 (2016) 194–201.
  53. M.J. Abeledo-Lameiro, A. Reboredo-Fernández, M.I. Polo-López, P. Fernández-Ibáñez, E. Ares-Mazás, H. Gómez-Couso, Photocatalytic inactivation of the waterborne protozoan parasite Cryptosporidium parvum using TiO2/H2O2 under simulated and natural solar conditions, Catal. Today., 280 (2017) 132–138.
  54. S. Giannakis, F.A. Gamarra Vives, D. Grandjean, A. Magnet, L.F. De Alencastro, C. Pulgarin, Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods, Water. Res., 84 (2015) 295–306.
  55. I. Velo-Gala, J.A. Pirán-Montaño, J. Rivera-Utrilla, M. Sánchez- Polo, A.J. Mota, Advanced Oxidation Processes based on the use of UVC and simulated solar radiation to remove the antibiotic tinidazole from water, Chem. Eng. J., 323 (2017) 605–617.
  56. J. Ma, M. Yang, F. Yu, J. Zheng, Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel, Sci. Rep., 5 (2015) 1–10.
  57. F.L. Rosario-Ortiz, E.C. Wert, S.A. Snyder, Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater, Water. Res., 44 (2010) 1440–1448.
  58. L. Bilińska, M. Gmurek, S. Ledakowicz, Comparison between industrial and simulated textile wastewater treatment by AOPs – Biodegradability, toxicity and cost assessment, Chem. Eng. J., 306 (2016) 550–559.
  59. M.S. Kumar, S.H. Sonawane, B.A. Bhanvase, B. Bethi, Treatment of ternary dye wastewater by hydrodynamic cavitation combined with other advanced oxidation processes (AOP’s), J. Water Process. Eng., 23 (2018) 250–256.
  60. G.S. Arcanjo, A.H. Mounteer, C.R. Bellato, L.M.M. da Silva, S.H. Brant Dias, P.R. da Silva, Heterogeneous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV–visible irradiation for color and toxicity reduction in secondary textile mill effluent, J. Environ. Manage., 211 (2018) 154–163.
  61. P.A. Pekakis, N.P. Xekoukoulotakis, D. Mantzavinos, Treatment of textile dyehouse wastewater by TiO2 photocatalysis, Water. Res., 40 (2006) 1276–1286.
  62. A. Touati, T. Hammedi, W. Najjar, Z. Ksibi, S. Sayadi, Photocatalytic degradation of textile wastewater in presence of hydrogen peroxide: effect of cerium doping titania, J. Ind. Eng. Chem., 35 (2016) 36–44.
  63. S. Haikin, Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice Hall, Upper Saddle River, 1999.