References

  1. S. Das, J. Essilfie-Dughan, M.J. Hendry, Fate of adsorbed arsenate during phase transformation of ferrihydrite in the presence of gypsum and alkaline conditions, Chem. Geol., 411 (2015) 69–80.
  2. M.A. Gomez, L. Becze, J.N. Cutler, G.P. Demopoulos, Hydrothermal reaction chemistry and characterization of ferric arsenate phases precipitated from Fe2(SO4)3–As2O5–H2SO4 solutions, Hydrometallurgy, 107 (2011) 74–90.
  3. L. Fan, F. Zhao, J. Liu, K.A. Hudson-Edwards, The As behavior of natural arsenical-containing colloidal ferric oxyhydroxide reacted with sulfate reducing bacteria, Chemosphere, 209 (2018) 381–391.
  4. X. Turrillas, L. Charlet, M.R. Johnson, F. Bardelli, Arsenic uptake by gypsum and calcite: Modeling and probing by neutron and X-ray scattering, Physica B, 385 (2007) 935–937.
  5. Z. Liu, Z.S. Carroll, S.C. Long, A. Roaespinosa, T. Runge, Centrifuge separation effect on bacterial indicator reduction in dairy manure, J. Environ. Eng., 191 (2017) 268–274.
  6. M. Hjorth, K.V. Christensen, M.L. Christensen, S.G. Sommer, Solid-liquid separation of animal slurry in theory and practice. A review, Agron. Sustain. Dev., 30 (2010) 153–180.
  7. K.M. Robertson, R.E. Milliken, S. Li, Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra, Lcarus, 277 (2016) 171–186.
  8. Pitman, K.M. Dobrea, E.Z.N. Jamieson, C.S. Dalton, J.B. Abbey, W.J. Joseph, C.S. Emily, What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Reflectance spectroscopy and optical functions for hydrated Fe-sulfates, Am. Mineral., 99 (2014) 1593–1603.
  9. J. Tang, Y. Liao, Z. Yang, L. Chai, Characterization of arsenic serious-contaminated soils from Shimen realgar mine area, the Asian largest realgar deposit in China, J. Soils Sediments, 16 (2016) 1519–1528.
  10. X. Zhu, R. Wang, L.U. Xiancai, Secondary minerals of weathered orpiment-realgar-bearing tailings in shimen carbonate-type realgar mine, Changde, Central China, Min. Petrol., 109 (2013) 1–15.
  11. Y. Wu, X.Y. Zhou, M. Lei, J. Yang, J. Ma, P.W. Qiao, T.B. Chen, Migration and transformation of arsenic: Contamination control and remediation in realgar mining areas, Appl. Geochem., (2016) 44–51.
  12. E.D. Burton, R.T. Bush, S.G. Johnston, K.M. Watling, R.K. Hocking, L.A. Sullivan, G.K. Parker, Sorption of arsenic(V) and arsenic(III) to schwertmannite, Environ. Sci. Technol., 43 (2009) 9202–9207.
  13. R.S. Cutting, V.S. Coker, N.D. Telling, R.L. Kimber, G.V.D. Laan, R.A.D. Pattrick, D.J. Vaughan, E. Arenholz, J.R. Lloyd, Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens, Environ. Sci. Technol., 46 (2012) 12591–12599.
  14. D. Zhang, Z. Yuan, S. Wang, Y. Jia, G.P. Demopoulos, Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry, J. Hazard. Mater., 300 (2015) 272–280.
  15. Z. Yang, Z. Wu, Y. Liao, L. Qi, W. Yang, L. Chai, Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil, Chemosphere, 181 (2017) 1–8.
  16. L. Carlson, J.M. Bigham, U. Schwertmann, A. Kyek, F. Wagner, Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues, Environ. Sci. Technol., 36 (2002) 1712–1719.
  17. Y. Jia, G.P. Demopoulos, Adsorption of arsenate onto ferrihydrite from aqueous solution: influence of media (sulfate vs. nitrate), added gypsum, and pH alteration, Environ. Sci. Technol., 39 (2005) 9523–9527.
  18. L. Fan, F. Zhao, J. Liu, R. L. Frost, The As behavior of natural arsenical-containing colloidal ferric oxyhydroxide reacted with sulfate reducing bacteria, Chem. Eng. J., 332 (2018) 183–191.
  19. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254 (2008) 2441–2449.
  20. J.L. Liang, W.D. Sun, Y.L. Li, S.Y. Zhu, H. Li, Y.L. Liu, W. Zhai, An XPS study on the valence states of arsenic in arsenian pyrite: Implications for Au deposition mechanism of the Yangshan Carlin-type gold deposit, western Qinling belt, J. Asian Earth Sci., 62 (2013) 363–372.
  21. J. Zobrist, P.R. Dowdle, J.A.D. And, R.S. Oremland, Mobilization of Arsenite by dissimilatory reduction of adsorbed Arsenate mobilization of Arsenite by dissimilatory reduction of adsorbed Arsenate, Environ. Sci. Technol., 34 (2000) 4747–4753.
  22. L. Xu, Z. Zhao, S. Wang, R. Pan, Y. Jia, Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities, Water Res., 45 (2011) 6781–6788.
  23. Y. Liu, A. Wang, J. Freemen, Raman, MIR, and NIR spectroscopic study of calcium sulfates: gypsum, bassanite, and anhydrite, in: Lunar and Planetary Science Conference, 2009, 2128.
  24. M.R. Ahsan, M.A. Uddin, M.G. Mortuza, Infrared study of the effect of P2O5 in the structure of lead silicate glasses, Indian J. Pure Ap. Phy., 43 (2005) 89–99.