References

  1. A. Surucu, V. Eyupoglu, O. Tutkun, Selective separation of cobalt and nickel by flat sheet supported liquid membrane using Alamine 300 as carrier, J. Ind. Eng. Chem., 18 (2012) 629–634.
  2. F.K. Crundwell, M.S. Moats, V. Ramachandran, T.G. Robinson, W.G. Davenport, Extraction of Cobalt from Nickel Laterite and Sulfide Ores, Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Chapter 29, Elsevier, Amsterdam, Boston, 2011, pp. 365–376.
  3. R.A. Kumbasar, Extraction and concentration of cobalt from acidic leach solutions containing Co–Ni by emulsion liquid membrane using TOA as extractant, J. Ind. Eng. Chem., 16 (2010) 448–454.
  4. R.A. Kumbasar, O. Tutkun, Separation of cobalt and nickel from acidic leach solutions by emulsion liquid membranes using Alamine 300 (TOA) as a mobile carrier, Desalination, 224 (2008) 201–208.
  5. T.Zh. Sadyrbaeva, Separation of cobalt(II) from nickel(II) by a hybrid liquid membrane–electrodialysis process using anion exchange carriers, Desalination, 365 (2015) 167–175.
  6. M.Z. Mubarok, L.I. Hanif, Cobalt and Nickel separation in nitric acid solution by solvent extraction using Cyanex 272 and Versatic 10, Procedia Chem., 19 (2016) 743–750.
  7. R.A. Kumbasar, Selective extraction of cobalt from strong acidic solutions containing cobalt and nickel through emulsion liquid membrane using TIOA as carrier, J. Ind. Eng. Chem., 18 (2012) 2076–2082.
  8. U. Ipek, Removal of Ni(II) and Zn(II) from an aqueous solution by reverse osmosis, Desalination, 174 (2005) 161–169.
  9. E. Katsou, S. Malamis, K.J. Haralambous, M. Loizidou, Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater, J. Membr. Sci., 360 (2010) 234–249.
  10. F. Akbal, S. Camci, Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, Desalination, 269 (2011) 214–222.
  11. B. Li, F. Liu, J. Wang, C. Ling, L. Li, P. Hou, A. Li, Z. Bai, Efficient separation and high selectivity for nickel from cobalt-solution by a novel chelating resin: batch, column and competition investigation, Chem. Eng. J., 195–196 (2012) 31–39.
  12. E. Repo, J.K. Warchol, T.A. Kurniawan, M.E.T. Sillanpää, Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPAmodified chitosan: kinetic and equilibrium modeling, Chem. Eng. J., 161 (2010) 73–82.
  13. M.V. Dinu, E.S. Dragan, Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms, Chem. Eng. J., 160 (2010) 157–163.
  14. M. Panigrahi, M. Grabda, D. Kozak, A. Dorai, E. Shibata, J. Kawamura, T. Nakamura, Liquid–liquid extraction of neodymium ions from aqueous solutions of NdCl3 by phosphonium-based ionic liquids, Sep. Purif. Technol., 171 (2016) 263–269.
  15. P.V. Vernekar, Y.D. Jagdale, A.W. Patwardhana, A.V. Patwardhana, S.A. Ansarib, P.K. Mohapatrab, V.K. Manchandac, Transport of cobalt(II) through a hollow fiber supported liquid membrane containing di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the carrier, Chem. Eng. Res. Des., 91 (2013) 141–157.
  16. M.T. Coll, A. Fortuny, C.S. Kedari, A.M. Sastre, Studies on the extraction of Co(II) and Ni(II) from aqueous chloride solutions using Primene JMT-Cyanex272 ionic liquid extractant, Hydrometallurgy, 125–126 (2012) 24–28.
  17. R.A. Kumbasar, Selective transport of cobalt (II) from ammoniacal solutions containing cobalt (II) and nickel (II) by emulsion liquid membranes using 8-hydroxyquinoline, J. Ind. Eng. Chem., 18 (2012) 145–151.
  18. X. Sun, Y. Ji, L. Zhang, J. Chen, Separation of cobalt and nickel using inner synergistic extraction from bifunctional ionic liquid extractant (Bif-ILE), J. Hazard. Mater., 182 (2010) 447–452.
  19. D. Parmentier, S. Paradis, S.J. Metz, S.K. Wiedmer, M.C. Kroon, Continuous process for selective metal extraction with an ionic liquid, Chem. Eng. Res. Des., 109 (2016) 553–560.
  20. B. Zawisza, R. Sitko, Micro-electrodeposition in the presence of ionic liquid for the preconcentration of trace amounts of Fe, Co, Ni and Zn from aqueous samples, Spectrochim. Acta, Part B, 82 (2013) 60–64.
  21. D. Buachuang, P. Ramakul, N. Leepipatpiboon, U. Pancharoen, Mass transfer modeling on the separation of tantalum and niobium from dilute hydrofluoric media through a hollow fiber supported liquid membrane, J. Alloys Compd., 509 (2011) 9549–9557.
  22. J.P. Mikkola, P. Virtanen, R. Sjöholm, Aliquat 336®—a versatile and affordable cation source for an entirely new family of hydrophobic ionic liquids, Green Chem., 8 (2006) 250–255.
  23. C. Deferm, M. Van de Voorde, J. Luyten, H. Oosterhof, J. Fransaer, K. Binnemans, Purification of indium by solvent extraction with undiluted ionic liquids, Green Chem., 18 (2016) 4116–4127.
  24. Y. Litaiem, M. Dhahbi, Measurements and correlations of viscosity, conductivity and density of an hydrophobic ionic liquid (Aliquat 336) mixtures with a non-associated dipolar aprotic solvent (DMC), J. Mol. Liq., 169 (2012) 54–62.
  25. W. Wei, C.-W. Cho, S. Kim, M.-H. Song, J.K. Bediako, Y.-S. Yun, Selective recovery of Au(III), Pt(IV), and Pd(II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336, J. Mol. Liq., 216 (2016) 18–24.
  26. B. Wassink, D. Dreisinger, J. Howard, Solvent extraction separation of zinc and cadmium from nickel and cobalt using Aliquat 336, a strong base anion exchanger, in the chloride and thiocyanate forms, Hydrometallurgy, 57 (2000) 235–252.
  27. G. Hellé, C. Mariet, G. Cote, Liquid–liquid extraction of uranium(VI) with Aliquat® 336 from HCl media in microfluidic devices: combination of micro-unit operations and online ICP-MS determination, Talanta, 139 (2015) 123–131.
  28. F.D.M. Fábrega, M.B. Mansur, Liquid–liquid extraction of mercury (II) from hydrochloric acid solutions by Aliquat 336, Hydrometallurgy, 87 (2007) 83–90.
  29. E. Quijada-Maldonado, M.J. Torres, J. Romero, Solvent extraction of Molybdenum (VI) from aqueous solution using ionic liquids as diluents, Sep. Purif. Technol., 177 (2017) 200–206.
  30. R.B. Sudderth, G. Kordosky, Some Practical Considerations in the Evaluation and Selection of Solvent Extraction Reagents, D. Malhotra, W.F. Riggs, Chemical Reagents in the Mineral Processing Industry, Society for Mining Metallurgy and Exploration, Colorado, USA, 1986, 181–196.
  31. G.M. Ritcey, Commercial Processes for Nickel and Cobalt, T.C. Lo, M.H.I. Baird, C. Hanson, Handbook of Solvent Extraction, Wiley, New York, 1983, pp. 673–687.
  32. A.H. Blitz-Raith, R. Paimin, R.W. Cattrall, S.D. Kolev, Separation of cobalt(II) from nickel(II) by solid-phase extraction into Aliquat 336 chloride immobilized in poly(vinyl chloride), Talanta, 71 (2007) 419–423.
  33. H.C. Kao, R.S. Juang, Kinetic analysis of non-dispersive solvent extraction of concentrated Co(II) from chloride solutions with Aliquat 336: significance of the knowledge of reaction equilibrium, J. Membr. Sci., 264 (2005) 104–112.
  34. S.Y. Choia, V.T. Nguyenb, J. Lee, H. Kanga, B.D. Pandeyd, Liquid-liquid extraction of Cd(II) from pure and Ni/Cd acidic chloride media using Cyanex 921: a selective treatment of hazardous leachate of spent Ni-Cd batteries, J. Hazard. Mater., 278 (2014) 258–266.
  35. A.A. Nayl, Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336, J. Hazard. Mater., 173 (2010) 223–230.
  36. M. Filiz, N.A. Sayar, A.A. Sayar, Extraction of cobalt(II) from aqueous hydrochloric acid solutions into alamine 336–m-xylene mixtures, Hydrometallurgy, 81 (2006) 167–173.
  37. A. Fernandes, J.C. Afonso, A.J.B. Dutra, Separation of nickel(II), cobalt(II) and lanthanides from spent Ni-MH batteries by hydrochloric acid leaching, solvent extraction and precipitation, Hydrometallurgy, 133 (2013) 37–43.
  38. Y. Liu, M.S. Lee, Separation of cobalt and nickel from chloride leach solution of nickel laterite ore by solvent extraction, Geosyst. Eng., 19 (2016) 214–221.
  39. W. Ferdous, A. Manalo, T. Aravinthan, Bond behaviour of composite sandwich panel and epoxy polymer matrix: Taguchi design of experiments and theoretical predictions, Constr. Build. Mater., 145 (2017) 76–87.
  40. N. Benyahia, N. Belkhouche, J.A. Jönsson, A comparative study of experimental optimization and response surface methodology of Bi(III) extraction by emulsion organophosphorus liquid membrane, J. Environ. Chem. Eng., 2 (2014) 1756–1766.
  41. H. Liu, Y.M. Zhang, J. Huang, T. Liu, Q.H. Shi, Optimization of vanadium (IV) extraction from stone coal leaching solution by emulsion liquid membrane using response surface methodology, Chem. Eng. Res. Des., 123 (2017) 111–119.
  42. M. Mesli, N. Belkhouche, Emulsion ionic liquid membrane for recovery process of lead. Comparative study of experimental and response surface design, Chem. Eng. Res. Des., 129 (2018) 160–169.
  43. G. Taguchi, S. Chowdhury, Y. Wu, Taguchi’s Quality Engineering Handbook, Wiley-Interscience, Hoboken, New Jersey, 2005.
  44. A. Nazari, H. Khanmohammadi, M. Amini, H. Hajiallahyari, A. Rahimi, Production geopolymers by Portland cement: designing the main parameters’ effects on compressive strength by Taguchi method, Mater. Des., 41 (2012) 43–49.
  45. P.K. Bose, M. Deb, R. Banerjee, A. Majumder, Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach, Energy, 63 (2013) 375–386.
  46. N.M.S. Kaminari, D.R. Schultz, M.J.J.S. Ponte, H.A. Ponte, C.E.B. Marino, A.C. Neto, Heavy metals recovery from industrial wastewater using Taguchi method, Chem. Eng. J., 126 (2007) 139–146.
  47. R. Azadi, Y. Rostamiyan, Experimental and analytical study of buckling strength of new quaternary hybrid nanocomposite using Taguchi method for optimization, Constr. Build. Mater., 88 (2015) 212–224.
  48. N. Pandey, K. Murugesan, H.R. Thomas, Optimization of ground heat exchangers for space heating and cooling applications using Taguchi method and utility concept, Appl. Energy, 190 (2017) 421–438.
  49. M.K. Balki, C. Sayin, M. Sarıkaya, Optimization of the operating parameters based on Taguchi method in an SI engine used pure gasoline, ethanol and methanol, Fuel, 180 (2016) 630–637.
  50. X. Liu, S. Zhao, Y. Qin, J. Zhao, W.A. Wan-Nawang, A parametric study on the bending accuracy in micro W-bending using Taguchi method, Measurement, 100 (2017) 233–242.
  51. E. Barrado, M. Vega, R. Pardon, P. Grande, J.L.D. Valle, Optimisation of a purification method for metal-containing wastewater by use of a Taguchi experimental design, Water Res., 30 (1996) 2309–2314.
  52. G. Dönmez, Z. Aksu, The effect of copper(II) ions on the growth and bioaccumulation properties of some yeasts, Process Biochem., 35 (1999) 35–142.
  53. T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Separation of copper ions by electrodialysis using Taguchi experimental design, Desalination, 169 (2004) 21–31.
  54. G.H.V.C. Chary, M.G. Dastidar, Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique, Fuel, 9 (2010) 2317–2322.
  55. A.B. Engin, O. Ozdemir, M. Turan, A.Z. Turan, Color removal from textile dyebath effluents in a zeolite fixed bed reactor: determination of optimum process conditions using Taguchi method, J. Hazard. Mater., 159 (2008) 348–353.
  56. M.R. Sohrabi, S. Jamshidi, A. Esmaeilifar, Cloud point extraction for determination of Diazinon: optimization of the effective parameters using Taguchi method, Chemom. Intell. Lab. Syst., 110 (2012) 49–54.
  57. R.S. Kumar, K. Sureshkumar, R. Velraj, Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method, Fuel, 140 (2015) 90–96.
  58. M. Sarıkaya, A. Güllü, Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL, J. Cleaner Prod., 65 (2014) 604–616.
  59. R. Pundir, G.H.V.C. Chary, M.G. Dastidar, Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp., Water Resour. Ind., 20 (2018) 83–92.