References

  1. IDA, International Desalination Yearbook 2017–2018, Media Analytics Ltd., Oxford, UK, 2017.
  2. Z. Liu, J. Cao, C. Li, H. Meng, A review on cleaning of nanofiltration and reverse osmosis membranes used for water treatment, Desal. Wat. Treat., 87 (2017) 27–67.
  3. S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmosis membrane fouling and control strategies, Sci. Total Environ., 595 (2017) 567–583.
  4. R.P. Schneider, L.M. Ferreira, P. Binder, J.R. Ramos, Analysis of foulant layer in all elements of an RO train, J. Membr. Sci., 261 (2005) 152–162.
  5. M. Shmulevsky, X. Li, H. Shemer, D. Hasson, R. Semiat, Analysis of the onset of calcium sulfate scaling on RO membranes, J. Membr. Sci., 524 (2017) 299–304.
  6. R.Y. Ning, Discussion of silica speciation, fouling, control and maximum reduction, Desalination, 151 (2003) 67–73.
  7. H.-C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice, S. Kjelleberg, Biofilms: an emergent form of bacterial life, Nat. Rev. Microbiol., 14 (2016) 563–575.
  8. H.-C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol., 8 (2010) 623–633.
  9. J.S. Vrouwenvelder, S.A. Manolarakis, J.P. van der Hoek, J.A.M. van Paassen, W.G.J. van der Meer, J.M.C. van Agtmaal, H.D.M. Prummel, J.C. Kruithof, M.C.M. van Loosdrecht, Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations, Water Res., 42 (2008) 4856–4868.
  10. F. Leitz, Membrane Element Autopsy Manual, Water Treatment Technology Program Report No. 17, US Department of the Interior, Bureau of Reclamation, 1996.
  11. E.W.F. de Roever, I.H. Huisman, Microscopy as a tool for analysis of membrane failure and fouling, Desalination, 207 (2007) 35–44.
  12. M. Pontié, S. Rapenne, A. Thekkedath, J. Duchesne, V. Jacquemet, J. Leparc, H. Suty, Tools for membrane autopsies and antifouling strategies in seawater feeds: a review, Desalination, 181 (2005) 75–90.
  13. R.S. Pembrey, K.C. Marshall, R.P. Schneider, Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties?, Appl. Environ. Microbiol., 65 (1999) 2877–2894.
  14. R.P. Schneider, Comparative analysis of thermodynamic approaches and diagnostic liquids for determination of contact angle-derived physicochemical parameters of solids coated with conditioning films: A practioner’s perspective, J. Adhes. Sci. Technol., 11 (1997) 65–93.
  15. P. Xu, C. Bellona, J.E. Drewes, Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilot-scale investigations, J. Membr. Sci., 353 (2010) 111–121.
  16. T. Tran, B. Bolto, S. Gray, M. Hoang, E. Ostarcevic, An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant, Water Res., 41 (2007) 3915–3923.
  17. S.T.V. Sim, W.B. Krantz, T.H. Chong, A.G. Fane, Online monitor for the reverse osmosis spiral wound module — Development of the canary cell, Desalination, 368 (2015) 48–59.
  18. S. Jeong, G. Naidu, R. Vollprecht, T.O. Leiknes, S. Vigneswaran, In-depth analyses of organic matters in a full-scale seawater desalination plant and an autopsy of reverse osmosis membrane, Sep. Purif. Technol., 162 (2016) 171–179.
  19. K. Donegan, C. Matyac, R. Seidler, A. Porteous, Evaluation of methods for sampling, recovery, and enumeration of bacteria applied to the phylloplane, Appl. Environ. Microbiol., 57 (1991) 51–56.
  20. G.R. Bruce, P.S. Gill, Estimates of precision in a standard additions analysis, J. Chem. Educ., 76 (1999) 805–807.
  21. APHA, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association, Washington, DC, New York, 2012.
  22. C. Zaiontz, www.real-statistics.com, 2017.
  23. J.M. Andrade, M.G. Estévez-Pérez, Statistical comparison of the slopes of two regression lines: a tutorial, Anal. Chim. Acta, 838 (2014) 1–12.
  24. G. Estévez-Pérez, J.M. Andrade, R.R. Wilcox, Bootstrap approach to compare the slopes of two calibrations when few standards are available, Anal. Chem., 88 (2016) 2289−2295.
  25. Anon, https://www.r-project.org, 2016.
  26. H.-C. Flemming, G. Schaule, T. Griebe, J. Schmitt, A. Tamachkiarowa, Biofouling the Achilles heel of membrane processes, Desalination, 113 (1997) 215–225.
  27. S. Kanazawa, S. Takeshima, K. Ohta, Effect of waring blender treatment on the counts of soil microorganisms, Soil Sci. Plant Nutr., 32 (1986) 81–89.
  28. E.M. Bejarano, R.P. Schneider, Use of fluorescent lectin probes for analysis of footprints from Pseudomonas aeruginosa MDC on hydrophilic and hydrophobic glass substrata, Appl. Environ. Microbiol., 70 (2004) 4356–4362.
  29. A. Siddiqui, S. Lehmann, Sz. S. Bucs, M. Fresquet, L. Fel, E.I.E.C. Prest, J. Ogier, C. Schellenberg, M.C.M. van Loosdrecht, J.C. Kruithof, J.S. Vrouwenvelder, Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators, Water Res., 110 (2017) 281–287.
  30. H.M. Kyllönen, P. Pirkonen, M. Nyström, Membrane filtration enhanced by ultrasound: a review, Desalination, 181 (2005) 319–335.
  31. S. Muthukumaran, S.E. Kentish, G.W. Stevens, M. Ashokkumar, Application of ultrasound in membrane separation processes: a review, Rev. Chem. Eng., 22 (2006) 155–194.
  32. C. Gómez-Suárez, H.J. Busscher, H.C. van Der Mei, Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces, Appl. Environ. Microbiol., 67 (2001) 2531–2537.
  33. A.J. Ansari, F.I. Hai, T. He, W.E. Price, L.D. Nghiem, Physical cleaning techniques to control fouling during the preconcentration of high suspended-solid content solutions for resource recovery by forward osmosis, Desalination, 429 (2018) 134–14.
  34. X. Chai, T. Kobayashi, N. Fujii, Ultrasound-associated cleaning of polymeric membranes for water treatment, Sep. Purif. Technol., 15 (1999) 139–146.
  35. T. Kobayashi, X. Chai, N. Fujii, Ultrasound enhanced cross-flow membrane filtration, Sep. Purif. Technol., 17 (1999) 31–40.
  36. D. Feng, J.S.J. van Deventer, C. Aldrich, Ultrasonic defouling of reverse osmosis membranes used to treat wastewater effluents, Sep. Purif. Technol., 50 (2006) 318–323.
  37. J. Wang, X. Gao, Y. Xu, Q. Wang, Y. Zhang, X. Wang, C. Gao, Ultrasonic-assisted acid cleaning of nanofiltration membranes fouled by inorganic scales in arsenic-rich brackish water, Desalination, 377 (2016) 172–177.
  38. Y.-S. Li, L.-C. Shi, X.-F. Gao, J.-G. Huang, Cleaning effects of oxalic acid under ultrasound to the used reverse osmosis membranes with an online cleaning and monitoring system, Desalination, 390 (2016) 62–71.
  39. B. Garcia-Fayos, J.M. Arnal, A. Gimenez, S. Alvarez-Blanco, M. Sancho, Study of ultrasonically enhanced chemical cleaning of SWRO membranes at pilot plant scale, Desal. Wat. Treat., 88 (2017) 1–7.
  40. D.G. Shchukin, E. Skorb, V. Belova, H. Möhwald, Ultrasonic Cavitation at Solid Surfaces, Adv. Mater., 23 (2011) 1922–1934.
  41. S. Broekman, O. Pohlmann, E.S. Beardwood, E. Cordemans de Meulenaer, Ultrasonic treatment for microbiological control of water systems, Ultrason. Sonochem., 17 (2010) 1041–1048.
  42. M. Herzberg, M. Elimelech, Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa, ISME J., 2 (2008) 180–194.
  43. M. Marroquin, A. Vu, T. Bruce, R. Powell, S.R. Wickramasinghe, S.M. Husson, Location and quantification of biological foulants in a wet membrane structure by cross-sectional confocal laser scanning microscopy, J. Membr. Sci., 453 (2014) 282–291.
  44. M. Marroquin, A. Vu, T. Bruce, S.R. Wickramasinghe, L. Zhao, S.M. Husson, Evaluation of fouling mechanisms in a symmetric microfiltration membrane using advanced imaging, J. Membr. Sci., 465 (2014) 1–13.
  45. H. Hagihara, K. Ito, N. Oshima, A. Yabuuchi, H. Suda, H. Yanagishita, Depth profiling of the free-volume holes in cellulose triacetate hollow-fiber membranes for reverse osmosis by means of variable-energy positron annihilation lifetime spectroscopy, Desalination, 344 (2014) 86–89.
  46. T. Fujioka, N. Oshima, R. Suzuki, W.E. Price, L.D. Nghiem, Probing the internal structure of reverse osmosis membranes by positron annihilation spectroscopy: gaining more insight into the transport of water and small solutes, J. Membr. Sci., 486 (2015) 106–118.
  47. A.S. Gorzalski, O. Coronell, Fouling of nanofiltration membranes in full- and bench-scale systems treating groundwater containing silica, J. Membr. Sci., 468 (2014) 349–359.
  48. K.C. Marshall, R. Pembrey, R.P. Schneider, The relevance of X-ray photoelectron spectroscopy for analysis of microbial cell surfaces: a critical review, Colloids Surf., B, 2 (1994) 371–376.
  49. J. Vaxelaire, P. Cézac, Moisture distribution in activated sludges: a review, Water Res., 38 (2004) 2215–2230.
  50. E. Yildirim, Y. Zhang, J.L. Lutkenhaus, M. Sammalkorpi, Thermal transitions in polyelectrolyte assemblies occur via a dehydration mechanism, ACS Macro Lett., 4 (2015) 1017−1021.
  51. F.M. Etzler, W. Drost-Hansen, A Role of Water in Growth, Metabolism and Intracellular Organization, M. Blank, Ed., Advances in Chemistry 188, Bioelectrochemistry: Ions, Surfaces, Membranes, American Chemical Society, Columbus, Ohio, 1980, pp. 485–497.
  52. W. Deng, X. Li, J. Yan, F. Wang, Y. Chi, K. Cen, Moisture distribution in sludges based on different testing methods, J. Environ. Sci., 23 (2011) 875–880.
  53. J.G. Speight, Lange’s Handbook of Chemistry, 16th ed., McGraw-Hill, Toronto, 2004.
  54. L. Erdey, S. Gál, G. Liptay, Thermoanalytical properties of analytical-grade reagents: ammonium salts, Talanta, 11 (1964) 913–940.
  55. G.B. Alexander, The reaction of low molecular weight silicic acids with molybdic acid, J. Am. Chem. Soc., 75 (1953) 2887–2888.
  56. M. Tanaka, K. Takahashi, Silicate species in high pH solution molybdate, whose silica concentration is determined by colorimetry, Anal. Chim. Acta, 429 (2001) 117–123.
  57. B. Mi, M. Elimelech, Silica scaling and scaling reversibility in forward osmosis, Desalination, 312 (2013) 75–81.
  58. H. Abdollahi, Simultaneous spectrophotometric determination of chromium(VI) and iron(III) with chromogenic mixed reagents by H-point standard addition method and partial least squares regression, Anal. Chim. Acta, 442 (2001) 327–336.
  59. A. Safavi, H. Abdollahi, Application of the H-point standard addition method to the speciation of Fe(II) and Fe(III) with chromogenic mixed reagents, Talanta, 54 (2001) 727–734.
  60. J.E.T. Andersen, The standard addition method revisited, TrAC, Trends Anal. Chem., 89 (2017) 21–33.
  61. M. Wieczorek, S. Rengevicova, P. Świt, A. Woźniakiewicz, J. Kozak, P. Kościelniak, New approach to H-point standard addition method for detection and elimination of unspecific interferences in samples with unknown matrix, Talanta, 170 (2017) 165–172.