References

  1. S.S. Gill, A. Tsolakis, K.D. Dearn, J. Rodríguez-Fernández, Combustion characteristics and emissions of Fischer–Tropsch diesel fuels in IC engines, Progr. Energy Combust. Sci., 37(4) (2011) 503–523.
  2. K. Kobayashi, 2005, Forecasting Supply and Demand up to 2030. International Energy Agency.
  3. M.C. Boufadel, A.M. Bobo, Y. Xia, Feasibility of deep nutrients delivery into a Prince William Sound beach for the bioremediation of the Exxon Valdez oil spill, Groundwater Monit. Remed., 31(2) (2011) 80–91.
  4. S. Haycox, “Fetched up”: unlearned lessons from the Exxon Valdez, J. Amer. Hist., 99(1) (2012) 219–228.
  5. E.L. Brannon, K. Collins, M.A. Cronin, L.L. Moulton, A.L. Maki, K.R. Parker, Review of the Exxon Valdez oil spill effects on pink salmon in Prince William Sound, Alaska. Rev. Fisheries Sci., 20(1) (2012) 20–60.
  6. M.A. Rose, B. Hunt, Learning from engineering failures: a case study of the deepwater horizon, Technol. Eng. Teacher, 71(5) (2012) 5–11.
  7. R.S. Kurtz, Oil spill causation and the deepwater horizon spill, Rev. Policy Res., 30(4) (2013) 366–380.
  8. A.C. Bejarano, J. Michel, Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: environmental legacy after twelve years of the Gulf war oil spill, Environ. Pollut., 158(5) (2010) 1561–1569.
  9. GESAMP, Estimates of oil entering the marine environment from sea-based activities (IMO FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection), in: Reports and Studies No. 75, GESAMP, London, 2007.
  10. OTA, Bioremediation of Marine Oil Spills: An Analysis of Oil Spill Response Technologies (OTA-BP-O-70), Office of Technology Assessment, Washington, DC, 1991.
  11. API, A Guide for Spill Response Planning in Marine Environments, American Petroleum Institute, Seattle, Washington, 2001.
  12. E. Xhelilaj, S. Sinanaj, The behaviour and effects of oil pollution into marine environment and oceans, Scient. J. Maritime Res., 24(1) (2010).
  13. R. Tecon, S. Beggah, K. Czechowska, V. Sentchilo, P.M. Chronopoulou, T.J. McGenity, J.R. van der Meer, Development of a multistrain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments, Environ. Sci. Technol., 44(3) (2009) 1049–1055.
  14. Y. Xia, M.C. Boufadel, Beach geomorphic factors for the persistence of subsurface oil from the Exxon Valdez spill in Alaska, Environ. Monit. Assess., 183(1–4) (2011) 5–21.
  15. G. Wilson, Deepwater horizon and the law of the sea: was the cure worse than the disease, BC Envtl. Aff. L. Rev., 41 (2014) 63.
  16. O.A.T. Ebuehi, I.B. Abibo, P.D. Shekwolo, K.I. Sigismund, A. Adoki, I.C. Okoro, Remediation of crude oil contaminated soil by enhanced natural attenuation technique, Environ. Eng., 9 (2005) 103–106.
  17. M.J. Kennish, 2001. Practical Handbook of Marine Science, 3rd ed. CRC Press Inc., Boca Raton, FL.
  18. L. Huang, T. Ma, D. Li, F.L. Liang, R.L. Liu, G.Q. Li, Optimization of nutrient component for diesel oil degradation by Rhodococcuserythropolis, Marine Pollut. Bul., 56(10) (2008) 1714–1718.
  19. F. Rigas, K. Papadopoulou, V. Dritsa, D. Doulia, Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology, J. Hazard. Mater., 140(1–2) (2007) 325–332.
  20. D.M. Pala, D.D.,de Carvalho, J.C. Pinto, G.L. Sant’AnnaJr, A suitable model to describe bioremediation of a petroleum-contaminated soil, Int. Biodeterior. Biodegrad., 58(3–4) (2006) 254–260.
  21. M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah, M. Mehranian, Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation, J. Hazard. Mater., 123(1–3) (2005) 187–195.
  22. M. Ishiguro, T. Makino, Y. Hattori, Sulfate adsorption and surface precipitation on a volcanic ash soil (allophanicandisol), J. Colloid Interface Sci., 300(2) (2006) 504–510.
  23. Leca Co, 2006. What is Leca? Leca Co. Iran. Available from: http://www.Leca.ir/index (cited).
  24. F.M. Tehrani, 1998. Rāhnamā-ye Jāme‘-e Līkā. Leca Handbook. Leca Co., Tehran. 368+19 pp. (in Persian). http://leca.ir/wp-content/uploads/maghalat/LECA-Handbook.pdf
  25. M.A. Nkansah, A.A. Christy, T. Barth, G.W. Francis, The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water, J. Hazard. Mater., 217 (2012) 360–365.
  26. Claytek, LECA, http://www.claytek.co.uk/leca home.htm, 2011 (accessed 25.03.11).
  27. Future garden, Lecastone http://futuregarden.com/propagation/medialecastone.html, 2011 (accessed 24.03.11).
  28. Laterlite, Light weight concrete made with leca structural, http://www.laterlite.compagina.aspx?idmenu=58&idlingua=eng&idpadre=63&livello=3, 2011 (accessed 24.03.11).
  29. Shanghai Tiandouxin Industrial Development (STID) Co., Ltd., http://tdxsy.com/english/news info.asp?nid=3, 2010 (accessed 17.02.12.)
  30. F.M. Tehrani, M. Azimi, ,, A.Namadmalian, 2007, Rāhnamā-ye Jāme‘-e LīkādarKeshāvarzīvaFazā-ye Sabz. Leca Handbook in Agriculture and Landscaping. Omīdān, Tehran. 40 pp. (in Persian). http://leca.ir/wp-content/uploads/maghalat/Aggriculture%20book%2088.pdf.
  31. M. Malakootian, J. Nouri, H. Hossaini, Removal of heavy metals from paint industry’s wastewater using Leca as an available adsorbent, Int. J. Environ. Sci. Technol., 6(2) (2009) 183–190.
  32. E.M. Kalhori, K. Yetilmezsoy, N. Uygur, M. Zarrabi, R.M.A. Shmeis, Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA), Appl. Surf. Sci., 287 (2013) 428–442.
  33. O. Ozdemir, B. Armagan, M. Turan, M.S. Celik, Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals, Dyes Pigments, 62(1) (2004) 49–60.
  34. Dansk Leca A/S, http://www.gpnm.org/e/uploads/131-b810984952.pdf (accessed 20.02.12).
  35. ASTM, Philadelphia, PA, USA, 15.01 (2002).
  36. USEPA - Method 1664, Revision B: n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, https://www.epa.gov/sites/production/files/2015-08/documents/method_1664b_2010.pdf.
  37. B. Doshi, M. Sillanpää, S. Kalliola, A review of bio-based materials for oil spill treatment, Water Res., 135 (2018) 262–277.
  38. L. Zeng, A method for preparing silica-containing iron (III) oxide adsorbents for arsenic removal, Water Res., 37(18) (2003) 4351–4358.
  39. R. Shokoohi, S. Azizi, A. Poormohammadi, F. Panahi, Study of pentachlorophenol biosorption by phanerochaete Chrysosporium biomass: kinetics and adsorption isotherms modeling, Der Pharmacia Lettre, 7 (2015) 59–65.
  40. R.H. Krishna, A.V.V.S. Swamy, Investigation on the effect of particle size and adsorption kinetics to removal of hexavalent chromium from the aqueous solutions using low cost sorbent, Eur. Chem. Bull., 1(7) (2012) 258–262.
  41. Z.C. Zeledon-Toruno, C. Lao-Luque, F.X.C. de las Heras, M. Sole-Sardans, Removal of PAHs from water using an immature coal (leonardite), Chemosphere, 67(3) (2007) 505–512.
  42. R. Crisafully, M.A.L. Milhome, R.M. Cavalcante, E.R. Silveira, D. De Keukeleire, R.F. Nascimento, Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin, Bioresour. Technol., 99(10) (2008) 4515–4519.
  43. A. Bazargan, J. Tan, C.W. Hui, G. McKay, Utilization of rice husks for the production of oil sorbent materials, Cellulose, 21(3) (2014) 1679–1688.
  44. G.A. El-Din, A.A. Amer, G. Malsh, M. Hussein, Study on the use of banana peels for oil spill removal, Alexandria Eng. J., 57(3) (2018) 2061–2068.
  45. L. Vlaev, P. Petkov, A. Dimitrov, S. Genieva, Cleanup of water polluted with crude oil or diesel fuel using rice husks ash, J. Taiwan Inst. Chem. Eng., 42(6) (2011) 957–964.
  46. V. Rajakovic, G. Aleksic, M. Radetic, L. Rajakovic, Efficiency of oil removal from real wastewater with different sorbent materials, J. Hazard. Mater., 143 (2007) 494–499.
  47. D. Angelova, I. Uzunov, S. Uzunova, A. Gigova, L. Minchev, Kinetics of oil and oil products adsorption by carbonized rice husks, Chem. Eng. J., 172 (2011) 306–311.
  48. S.M. Sidik, A.A. Jalil, S. Triwahyono, S.H. Adam, M.A.H. Satar, B.H. Hameed, Modified oil palm leaves adsorbent with enhanced hydrophobicity for crude oil removal, Chem. Eng. J., 203 (2012) 9–18.
  49. A. Srinivasan, T. Viraraghavan, Removal of oil by walnut shell media, Bioresour. Technol., 99(17) (2008) 8217–8220.
  50. E. Khan, W. Virojnagud, T. Ratpukdi, Use of biomass sorbents for oil removal from gas station runoff, Chemosphere, 57(7) (2004) 681–689.
  51. W. Pitakpoolsil, M. Hunsom, Adsorption of pollutants from biodiesel wastewater using chitosan flakes, J. Taiwan Inst. Chem. Eng., 44(6) (2013) 963–971.
  52. H. Moradi, S. Sharifnia, F. Rahimpour, Photocatalytic decolorization of reactive yellow 84 from aqueous solutions using ZnO nanoparticles supported on mineral LECA, Mater. Chem. Phys., 158 (2015) 38–44.
  53. N. Guettai, H.A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension, Part II: kinetics study, Desalination, 185 (2005) 439–448.
  54. S. Kaneco, N. Li, K.K. Itoh, H. Katsumata, T. Suzuki, K. Ohta, Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution: kinetics and mineralization, Chem. Eng. J., 148 (2009) 50–56.
  55. M.T. Khorasani, A. Joorabloo, H. Adeli, Z. Mansoori-Moghadam, A. Moghaddam, Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials, Carbohydr. Polym., 207 (2019) 542–554.