References

  1. Y. Bao, M. Qin, Y. Yu, L. Zhang, H. Wu, Facile fabrication of porous NiCo2O4 nanosheets with high adsorption performance toward Congo red, J. Phys. Chem. Solids, 124 (2019) 289–295.
  2. H. Li, H. Liu, Q. Zhang, C. Wang, T. Li, Synthesis and photocatalytic activity of ring-like anatase TiO2 with {001} facts exposed, Ceram. Int., 41 (2015) 8717–8722.
  3. S. Liu, Z. Wang, C. Yu, H.B. Wu, G. Wang, Q. Dong, J. Qiu, A. Eychmüller, X.W. David Lou, A flexible TiO₂(B)-based battery electrode with superior power rate and ultralong cycle life, Adv. Mater., 25 (2013) 3462–3467.
  4. C. Wang, F. Wang, Y. Zhao, Y. Li, Q. Yue, Y. Liu, Y. Liu, A.A. Elzatahry, A. Al-Enizi, Y. Wu, Y. Deng, D. Zhao, Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries, Nano Res., 9 (2016) 165–173.
  5. C.B.D. Marien, T. Cottineau, D. Robert, P. Drogui, TiO2 nanotube arrays: influence of tube length on the photocatalytic degradation of Paraquat, Appl. Catal., B, 194 (2016) 1–6.
  6. F. Cao, J. Xiong, F. Wu, Q. Liu, Z. Shi, Y. Yu, X. Wang, L. Li, Enhanced photoelectrochemical performance from rationally designed anatase/rutile TiO2 heterostructures, ACS Appl. Mater. Interfaces, 8 (2016) 12239.
  7. V. Vaiano, G. Iervolino, D. Sannino, J.J. Murcia, M.C. Hidalgo, P. Ciambelli, J.A. Navío, Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts, Appl. Catal., B, 188 (2016) 134–146.
  8. K. Chen, Z. Jiang, J. Qin, Y. Jiang, R. Li, H. Tang, X. Yang, Synthesis and improved photocatalytic activity of ultrathin TiO2 nanosheets with nearly 100% exposed (001) facets, Ceram. Int., 40 (2014) 16817–16823.
  9. Z. Lu, F. Chen, M. He, M. Song, Z. Ma, W. Shi, Y. Yan, J. Lan, F. Li, P. Xiao, Microwave synthesis of a novel magnetic imprinted TiO2 photocatalyst with excellent transparency for selective photodegradation of enrofloxacin hydrochloride residues solution, Chem. Eng. J., 249 (2014) 15–26.
  10. C. Hu, X. Zhang, W. Li, Y. Yan, G. Xi, H. Yang, J. Li, H. Bai, Large-scale, ultrathin and (001) facet exposed TiO2 nanosheet superstructures and their applications in photocatalysis, J. Mater. Chem. A, 2 (2014) 2040–2043.
  11. G. Xiang, T. Li, J. Zhuang, X. Wang, Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties, Chem. Commun., 46 (2010) 6801.
  12. P. Wang, Y. Li, Z. Liu, J. Chen, Y. Wu, M. Guo, P. Na, In-situ deposition of Ag3PO4 on TiO2 nanosheets dominated by (001) facets for enhanced photocatalytic activities and recyclability, Ceram. Int., 43 (2017) 11588–11595.
  13. D. Li, J. Jia, T. Zheng, X. Cheng, X. Yu, Construction and characterization of visible light active Pd nano-crystallite decorated and C-N-S-co-doped TiO2 nanosheet array photoelectrode for enhanced photocatalytic degradation of acetylsalicylic acid, Appl. Catal., B, 188 (2016) 259–271.
  14. J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets, J. Phys. Chem. C, 114 (2010) 13118–13125.
  15. S. Wang, J.-H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L. Wang, Recent progress on visible light responsive heterojunctions for photocatalytic applications, J. Mater. Sci. Technol., 33 (2017) 1–22.
  16. Y. Zhang, T. Wang, M. Zhou, Y. Wang, Z. Zhang, Hydrothermal preparation of Ag-TiO2 nanostructures with exposed {001}/{101} facets for enhancing visible light photocatalytic activity, Ceram. Int., 43 (2016) 3118–3126.
  17. W.-S. Wang, D.-H. Wang, W.-G. Qu, L.-Q. Lu, A.-W. Xu, Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity, J. Phys. Chem. C, 116 (2012) 19893–19901.
  18. W. Guo, F. Zhang, C. Lin, Z.L. Wang, Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange, Adv. Mater., 24 (2012) 4761–4764.
  19. J. Li, S. Wang, Y. Du, W. Liao, Enhanced photocatalytic performance of TiO2@C nanosheets derived from twodimensional Ti2CTx, Ceram. Int., 44 (2018) 7042–7046.
  20. B.A. Al-Maythalony, O. Shekhah, R. Swaidan, Y. Belmabkhout, I. Pinnau, M. Eddaoudi, Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity, J. Am. Chem. Soc., 137 (2015) 1754–1757.
  21. Y.-P. Yuan, L.-S. Yin, S.-W. Cao, G.-S. Xu, C.-H. Li, C. Xue, Improving photocatalytic hydrogen production of metal–organic framework UiO-66 octahedrons by dye-sensitization, Appl. Catal., B, 168–169 (2015) 572–576.
  22. I. Hod, M.D. Sampson, P. Deria, C.P. Kubiak, O.K. Farha, J.T. Hupp, Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2, ACS Catal., 5 (2015) 6302–6309.
  23. I. Spanopoulos, C. Tsangarakis, E. Klontzas, E. Tylianakis, G. Froudakis, K. Adil, Y. Belmabkhout, M. Eddaoudi, P.N. Trikalitis, Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage, J. Am. Chem. Soc., 138 (2016) 1568–1574.
  24. K.G.M. Laurier, F. Vermoortele, R. Ameloot, D.E. De Vos, J. Hofkens, M.B.J. Roeffaers, Iron(III)-based metal–organic frameworks as visible light photocatalysts, J. Am. Chem. Soc., 135 (2013) 14488–14491.
  25. W.T. Xu, L. Ma, F. Ke, F.-M. Peng, G.-S. Xu, Y.-H. Shen, J.-F. Zhu, L.-G. Qiu, Y.-P. Yuan, Metal–organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye, Dalton Trans., 43 (2014) 3792–3798.
  26. D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways, ACS Catal., 4 (12) (2014).
  27. D. Wang, M. Wang, Z. Li, Fe-based metal–organic frameworks for highly selective photocatalytic benzene hydroxylation to phenol, ACS Catal., 5 (2015) 6852–6857.
  28. H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.-H. Yu, H.-L. Jiang, Visible-light photoreduction of CO2 in a metal–organic framework: boosting electron–hole separation via electron trap states, J. Am. Chem. Soc., 137 (2015) 13440–13443.
  29. S. Vaesen, V. Guillerm, Q. Yang, A.D. Wiersum, B. Marszalek, B. Gil, A. Vimont, M. Daturi, T. Devic, P.L. Llewellyn, G. Maurin, G. De Weireld, A robust amino-functionalized titanium(IV) based MOF for improved separation of acid gases, Chem. Commun., 49 (2013) 10082–10084.
  30. Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction, Angew. Chem. Int. Ed., 51 (2012) 3364–3367.
  31. D. Sun, Y. Lin, Z. Li, Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti), Appl. Catal., B, 164 (2015) 428–432.
  32. S.C. Gomes, I. Luz, F.X. Llabrés i Xamena, A. Corma, H. García, Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation, Chem. Eur. J., 16 (2010) 11133–11138.
  33. D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Studies on photocatalytic CO2 reduction over NH2‐Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks, Chem. Eur. J., 19 (2013) 14279–14285.
  34. J.-D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S.-H. Yu, H.-L. Jiang, Boosting photocatalytic hydrogen production of a metal–organic framework decorated with platinum nanoparticles: the platinum location matters, Angew. Chem. Int. Ed., 55 (2016) 9389–9393.
  35. D. Sun, W. Liu, M. Qiu, Y. Zhang, Z. Li, Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs), Chem. Commun., 51 (2015) 10765–10765.
  36. X. Zeng, L. Huang, C. Wang, J. Wang, J. Li, X. Luo, Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect, ACS Appl. Mater. Interfaces, 8 (2016) 20274.
  37. F. Ke, L. Wang, J. Zhu, Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation, Nano Res., 8 (2015) 1834–1846.
  38. J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu, Y. Sun, Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal–organic frameworks, Chem. Commun., 49 (2013) 6761–6763.
  39. H. Sheng, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Urchininspired TiO2@MIL-101 double-shell hollow particles: adsorption and highly efficient photocatalytic degradation of hydrogen sulfide, Chem. Mater., 29 (2017) 5612–5616.
  40. S. Abedi, A. Morsali, Ordered mesoporous metal–organic frameworks incorporated with amorphous TiO2 as photocatalyst for selective aerobic oxidation in sunlight irradiation, ACS Catal., 14 (1995) 1398–1403.
  41. R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H.-L. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Integration of an inorganic semiconductor with a metal–organic framework: a platform for enhanced gaseous photocatalytic reactions, Adv. Mater., 26 (2014) 4783.
  42. G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q. Lu, H.M. Cheng, Titanium dioxide crystals with tailored facets, Chem. Rev., 114 (2014) 9559–9612.
  43. B. Liu, Y. Huang, Y. Wen, L. Du, W. Zeng, Y. Shi, F. Zhang, G. Zhu, X. Xu, Y. Wang, Highly dispersive {001} facetsexposed nanocrystalline TiO2 on high quality graphene as a high performance photocatalyst, J. Mater. Chem., 22 (2012) 7484–7491.
  44. X. Liu, R. Dang, W. Dong, X. Huang, J. Tang, H. Gao, G. Wang, A sandwich-like heterostructure of TiO2 nanosheets with MIL-100(Fe): a platform for efficient visible-light-driven photocatalysis, Appl. Catal., B, 209 (2017) 506–513.
  45. A. Crake, K.C. Christoforidis, A. Kafizas, S. Zafeiratos, C. Petit, CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation, Appl. Catal., B, 210 (2017) 131–140.
  46. J. Ma, X. Guo, Y. Ying, D. Liu, C. Zhong, Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance, Chem. Eng. J., 313 (2016) 890–898.
  47. Y. Cao, Y. Zhao, Z. Lv, F. Song, Q. Zhong, Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites, J. Ind. Eng. Chem., 27 (2015) 102–107.
  48. J. Hong, C. Chen, F.E. Bedoya, G.H. Kelsall, D. O’Hare, C. Petit, Carbon nitride nanosheet/metal–organic framework nanocomposites with synergistic photocatalytic activities, Catal. Sci. Technol., 6 (2016) 5042–5051.
  49. K.C. Christoforidis, A. Iglesias-Juez, S.J.A. Figueroa, M. Di Michiel, M.A. Newton, M. Fernández-García, Structure and activity of iron-doped TiO2-anatase nanomaterials for gasphase toluene photo-oxidation, Catal. Sci. Technol., 3 (2012) 626–634.
  50. Y. Cao, Q. Li, C. Li, J. Li, J. Yang, Surface heterojunction between (001) and (101) facets of ultrafine anatase TiO2 nanocrystals for highly efficient photoreduction CO2 to CH4, Appl. Catal., B, 198 (2016) 378–388.
  51. X. Sun, Q. Xia, Z. Zhao, Y. Li, Z. Li, Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane, Chem. Eng. J., 239 (2014) 226–232.
  52. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature, 453 (2008) 638.
  53. Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.-S. Park, L. Jiang, J.H. Kim, S.X. Dou, Generalized self-assembly of scalable twodimensional transition metal oxide nanosheets, Nat. Commun., 5 (2014) 3813.
  54. Q. Liang, S. Cui, C. Liu, S. Xu, C. Yao, Z. Li, Construction of CdS@ UIO-66-NH2 core-shell nanorods for enhanced photocatalytic activity with excellent photostability, J. Colloid Interface Sci., 524 (2018) 379–387.
  55. Y. Pi, X. Li, Q. Xia, J. Wu, Y. Li, J. Xiao, Z. Li, Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs), Chem. Eng. J., 337 (2017) 351–371.
  56. Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions, J. Hazard. Mater., 283 (2015) 329–339.
  57. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Band alignment of rutile and anatase TiO₂, Nat. Mater., 12 (2013) 798–801.
  58. L. Ai, C. Zhang, L. Li, J. Jiang, Iron terephthalate metal–organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation, Appl. Catal., B, 148–149 (2014) 191–200.
  59. Z. Lu, Z. Yu, J. Dong, M. Song, Y. Liu, X. Liu, Z. Ma, H. Su, Y. Yan, P. Huo, Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline, Chem. Eng. J., 337 (2018) 228–241.
  60. Z. Lu, J. Peng, M. Song, Y. Liu, X. Liu, P. Huo, H. Dong, S. Yuan, Z. Ma, S. Han, Improved recyclability and selectivity of environment-friendly MFA-based heterojunction imprinted photocatalyst for secondary pollution free tetracycline orientation degradation, Chem. Eng. J., 360 (2019) 1262–1276.