References

  1. M. Romano, H. Ferreyra, G. Ferreyroa, F.V. Molina, A. Caselli, L. Barberis, P. Beldomenico, M. Uhart, Lead pollution from waterfowl hunting in wetlands and rice fields in Argentina, Sci. Total. Environ., 545 (2016) 104–113.
  2. N. Silva-Sánchez, J.E. Schofield, T.M. Mighall, A.M. Cortizas, K.J. Edwards, L. Foser, Climate changes, lead pollution and soil erosion in south Greenland over the past 700 years, Quaternary Res., 84 (2015) 159–173.
  3. U. Förstner, G.T.W. Wittmann, Metal Pollution in the Aquatic Environment, Springer, Berlin, Heidelberg, 1979.
  4. V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal, J. Hazard. Mater., 185 (2011) 17–23.
  5. X. Huo, L. Peng, X. Xu, L. Zhang, B. Qiu, Z. Qi, Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China, Environ. Health Persp., 115 (2007) 1113–1117.
  6. J. Liu, Y. Ai, L. McCauley, J.P. Martin, C.H. Yan, X.M. Shen, H. Needleman, Blood lead levels and associated sociodemographic factors among preschool children in the South Eastern region of China, Paediatr. Perinat, EP, 26 (2012) 61–69.
  7. Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi, A. Montiel, Heavy metal removal from aqueous solutions by activated phosphate rock, J. Hazard. Mater., 156 (2008) 412–420.
  8. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308 (2017) 438–462.
  9. O. Kaygili, S.V. Dorozhkin, T. Ates, A.A. Al-Ghamdi, F. Yakuphanoglu, Dielectric properties of Fe doped hydroxyapatite prepared by sol–gel method, Ceram. Int., 40 (2014) 9395–9402.
  10. Y. Feng, J.L. Gong, G.M. Zeng, Q.Y. Niu, H.Y. Zhang, C.G. Niu, J.H. Deng, M. Yan, Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents, Chem. Eng. J., 162 (2010) 487–494.
  11. L. Cui, Y. Wang, L. Hu, L. Gao, B. Du, Q. Wei, Mechanism of Pb (II) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide, RSC Adv., 5 (2015) 9759–9770.
  12. Y. Hashimoto, T. Sato, Removal of aqueous lead by poorlycrystalline hydroxyapatites, Chemosphere, 69 (2007) 1775–1782.
  13. F. Fernane, S. Boudia, F. Aiouache, Removal Cu (II) and Ni (II) by natural and synthetic hydroxyapatites: a comparative study, Desal. Wat. Treat., 52 (2014) 2856–2862.
  14. X.Y. Zhao, Y.J. Zhu, J. Zhao, B.Q. Lu, F. Chen, C. Qi, J. Wu, Hydroxyapatite nanosheet-assembled microspheres: hemoglobintemplated synthesis and adsorption for heavy metal ions, J. Colloid Interface Sci., 416 (2014) 11–18.
  15. S. Hokkanen, E. Repo, L.J. Westholm, S. Lou, T. Sainio, M. Sillanpää, Adsorption of Ni2+, Cd2+, PO43− and NO3 from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite, Chem. Eng. J., 252 (2014) 64–74.
  16. G. Udhayakumar, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhoshh, A. Vijayshankar, Magnesium incorporated hydroxyapatite nanoparticles: preparation, characterization, antibacterial and larvicidal activity, Arab. J. Chem., 11 (2018) 645–654.
  17. J.R. Ramya, K.T. Arul, K. Elayaraja, S.N. Kalkura, Physicochemical and biological properties of iron and zinc ions co-doped nanocrystalline hydroxyapatite, synthesized by ultrasonication, Ceram. Int., 40 (2014) 16707–16717.
  18. Y. Nie, C. Hu, C. Kong, Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite, J. Hazard. Mater., 233 (2012) 194–199.
  19. L. Chen, K.S. Zhang, J.Y. He, X.J. Huang, J.H. Liu, Enhanced fluoride removal from water by sulfate-doped hydroxyapatite hierarchical hollow microspheres, Chem. Eng. J., 285 (2016) 616–624.
  20. T. Suzuki, T. Hatsushika, M. Miyake, Synthetic hydroxyapatites as inorganic cation exchangers. Part 2, J. Chem. Soc., Faraday Trans., 78 (1982) 3605–3611.
  21. F. Fernane, M.O. Mecherri, P. Sharrock, M. Fiallo, R. Sipos, Hydroxyapatite interactions with copper complexes, Mater. Sci. Eng. C, 30 (2010) 1060–1064.
  22. Q.Y. Ma, S.J. Traina, T.J. Logan, In situ lead immobilization by apatite. Environ. Sci. Technol., 27 (1993) 1803–1810.
  23. Y. Xu, F.W. Schwartz, Lead immobilization by hydroxyapatite in aqueous solutions, J. Contam. Hydrol., 15 (1994) 187–206.
  24. E. Mavropoulos, A.M. Rossi, A.M. Costa, Studies on the mechanisms of lead immobilization by hydroxyapatite, Environ. Sci. Technol., 36 (2002) 1625–1629.
  25. L.P. Higuita, A.F. Vargas, M.J. Gil, L.F. Giraldo, Synthesis and characterization of nanocomposite based on hydroxyapatite and monetite, Mater. Lett., 175 (2016) 169–172.
  26. E. Ahmadzadeh, F. Talebnia, M. Tabatabaei, H. Ahmadzadeh, B. Mostaghaci, Osteoconductive composite graft based on bacterial synthesized hydroxyapatite nanoparticles doped with different ions: from synthesis to in vivo studies, Nanomednanotechnol., 12 (2016) 1387–1395.
  27. H.B. Lu, C.T. Campbell, D.J. Graham, B.D. Ratner, Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS, Anal. Chem., 72 (2000) 2886–2894.
  28. S. Chander, D.W. Fuerstenau, An XPS study of the flouride uptake by hydroxyapatite, Colloids Surf., 13 (1985) 137–144.
  29. K. Nagakane, Y. Yoshida, I. Hirata, R. Fukuda, Y. Nakayama, K. Shirai, T. Ogawa, K. Suzuki, B.V. Meerbeek, M. Okazaki, Analysis of chemical interaction of 4-MET with hydroxyapatite using XPS, Dent. Mater. J., 25 (2006) 645–649.
  30. Y.J. Wang, J.H. Chen, Y.X. Cui, S.Q. Wang, D.M. Zhou, Effects of low-molecular-weight organic acids on Cu (II) adsorption onto hydroxyapatite nanoparticles, J. Hazard. Mater., 162 (2009) 1135–1140.
  31. N. Ohtsu, S. Hiromoto, M. Yamane, K. Satoh, M. Tomozawa, Chemical and crystallographic characterizations of hydroxyapatiteand octacalcium phosphate-coatings on magnesium synthesized by chemical solution deposition using XPS and XRD, Surf. Coat. Technol., 218 (2013) 114–118.
  32. R.M. Wilson, J.C. Elliott, S.E.P. Dowker, L.M. Rodriguez-Lorenzo, Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite, Biomaterials, 26 (2005) 1317–1327.
  33. Z.S. Tao, W.S. Zhou, X.W. He, W. Liu, B.L. Bai, Q. Zhou, Z. L. Huang, K. Tu, H. Li, T. Sun, Y. X. Lv, W. Cui, L. Yang, A comparative study of zinc, magnesium, strontium incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats, Mater. Sci. Eng. C, 62 (2016) 226–232.
  34. R. Jalali, H. Ghafourian, Y. Asef, S.J. Davapanah, S. Sepehr, Removal and recovery of lead using nonliving biomass of marine algae, J. Hazard. Mater., 92 (2002) 253–262.
  35. N. Bektaş, B.A. Ağım, S. Kara, Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite, J. Hazard. Mater., 112 (2004) 115–122.
  36. K. Al-Zboon, M.S. Al-Harahsheh, F.B. Hani, Fly ash-based geopolymer for Pb removal from aqueous solution, J. Hazard. Mater., 188 (2011) 414–421.
  37. T.W. Cheng, M.L. Lee, M.S. Ko, T.H. Ueng, S.F. Yang, The heavy metal adsorption characteristics on metakaolin-based geopolymer, Appl. Clay Sci., 56 (2012) 90–96.
  38. F. Fadzil, S. Ibrahim, M.A.K.M. Hanafiah, Adsorption of lead (II) onto organic acid modified rubber leaf powder: batch and column studies, Process Saf. Environ., 100 (2016) 1–8.
  39. X.H. Li, Z. Wang, Q. Li, J.X. Ma, M.Z. Zhu, Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption, Chem. Eng. J., 273 (2015) 630–637.
  40. Y. Liu, L. Xu, J. Liu, J.S. Liu, X.Y. Liu, C.H. Chen, G.Y. Li, Y.F. Meng, Graphene oxides cross-linked with hyperbranched polyethylenimines: preparation, characterization and their potential as recyclable and highly efficient adsorption materials for lead (II) ions, Chem. Eng. J., 285 (2016) 698–708.
  41. J. Zhao, J. Liu, N. Li, W. Wang, J. Nan, Z.W. Zhao, F.Y. Cui, Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study, Chem. Eng. J., 304 (2016) 737–746.
  42. M.E. Mahmoud, G.M. Nabil, N.M. El-Mallah, H.I. Bassiouny, S. Kumar, T.M. Abdel-Fattah, Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent, J. Ind. Eng. Chem., 37 (2016) 156–167.
  43. T. Suzuki, K. Ishigaki, M. Miyake, Synthetic hydroxyapatites as inorganic cation exchangers Part 3-Exchange characteristics of lead ions (Pb2+), J. Chem. Soc., Faraday Trans., 80 (1984) 3157–3165.
  44. X. Cao, L.Q. Ma, D.R. Rhue, C.S. Appel, Mechanisms of lead, copper, and zinc retention by phosphate rock, Environ. Pollut., 131 (2004) 435–444.
  45. T.F. Stoica, C. Morosanu, A. Slav, T. Stoica, P. Osiceanu, C. Anastasescu, M. Gartner, M. Zaharescu, Hydroxyapatite films obtained by sol–gel and sputtering, Thin Solid Films, 516 (2008) 8112–8116.
  46. S. Kačiulis, G. Mattogno, L. Pandolfi, M. Cavalli, G. Gnappi, A. Montenero, XPS study of apatite-based coatings prepared by sol–gel technique, Appl. Surf. Sci., 151 (1999) 1–5.
  47. N. Ohtsu, Y. Nakamura, S. Semboshi, Thin hydroxyapatite coating on titanium fabricated by chemical coating process using calcium phosphate slurry, Surf. Coat. Technol., 206 (2012) 2616–2621.