References

  1. S.G. Lanas, M. Valiente, M. Tolazzi, A. Melchior, Thermodynamics of Hg2+ and Ag+ adsorption by 3-mercaptopropionic acidfunctionalized superparamagnetic iron oxide nanoparticles, J. Therm. Anal. Calorim., 136 (2019) 1153–1162.
  2. C.W. Kim, S.S. Lee, B.J. Lafferty, D.E. Giammar, J.D. Fortner, Engineered superparamagnetic nanomaterials for arsenic(V) and chromium(VI) sorption and separation: quantifying the role of organic surface coatings, Environ. Sci.: Nano, 5 (2018) 556–563.
  3. J. Gómez-Pastora, E. Bringas, I. Ortiz, Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications: a review, Eng. J., 256 (2014) 187–204.
  4. W. Wang, K. Cai, X.F. Wu, X.H. Shao, X.J. Yang, A novel poly (m-phenylenediamine)/reduced graphene oxide/nickel ferrite magnetic adsorbent with excellent removal ability of dyes and Cr(VI), J. Alloys Compd., 722 (2017) 532–543.
  5. Y.-X. Zhang, Y. Jia, A facile solution approach for the synthesis of akaganeite (β-FeOOH) nanorods and their ion-exchange mechanism toward As(V) ions, Appl. Surf. Sci., 290 (2014) 102–106.
  6. M. Kumari, C.U. Pittman Jr., D. Mohan, Heavy metals [chromium(VI) and lead(II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres, J. Colloid Interface Sci., 442 (2015) 120–132.
  7. J.H. Zhao, W. Lin, Q.G. Chang, W.P. Li, Y.P. Lai, Adsorptive characteristics of akaganeite and its environmental applications: a review, Environ. Technol. Rev., 1 (2012) 114–126.
  8. M. Ayad, G. El-Hefnawy, S. Zaghlol, Facile synthesis of polyaniline nanoparticles; its adsorption behavior, Chem. Eng. J., 217 (2013) 460–465.
  9. Sh.M. Ebrahim, A.B. Kashyout, M.M. Soliman, Electrical and structural properties of polyaniline/cellulose triacetate blend films, J. Polym. Res., 14 (2007) 423–429.
  10. M. Babazadeh, F. Zalloi, A. Olad, Fabrication of conductive polyaniline nanocomposites based on silica nanoparticles via in-situ chemical oxidative polymerization technique, Synth. React. Inorg. Met.-Org. Chem., 45 (2015) 86–91.
  11. S. Ebrahim, R. El-Raey, A. Hefnawy, H. Ibrahim, M. Soliman, T.M. Abdel-Fattah, Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of malathion, Synth. Met., 190 (2014) 13–19.
  12. S. Ebrahim, A. Shokry, H. Ibrahim, M. Soliman, Polyaniline/akaganéite nanocomposite for detoxification of noxious Cr(VI) from aquatic environment, J. Polym. Res., 23 (2016) 79–85.
  13. S. Panda, B. Acharya, Electronic Applications of Conducting Polymer Nanocomposites, V. Nath, J. Mandal, Eds., Proceedings of the Third International Conference on Microelectronics, Computing and Communication Systems, Lecture Notes in Electrical Engineering, Springer, Singapore, Vol. 556, 2019, pp. 211–220.
  14. Q. Yuan, N. Li, Y. Chi, W.C. Geng, W.F. Yan, Y. Zhao, X.T. Li, B. Dong, Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions, J. Hazard. Mater., 254–255 (2013) 157–165.
  15. R.J. Li, L.F. Liu, F.L. Yang, Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II), Chem. Eng. J., 229 (2013) 460–468.
  16. E.C. Gomes, M.A.S. Oliveira, Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines, Am. J. Polym. Sci., 2 (2012) 5–13.
  17. R.L. Razalli, M.M. Abdi, P.M. Tahir, A. Moradbak, Y. Sulaiman, L.Y. Heng, Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization, RSC Adv., 7 (2017) 25191–25198.
  18. H.B. Gu, S.B. Rapole, J. Sharma, Y.D. Huang, D.M. Cao, H.A. Colorado, Z.P. Luo, N. Haldolaarachchige, D.P. Young, B. Walters, S.Y. Wei, Z.H. Guo, Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal, RSC Adv., 2 (2012) 11007–11018.
  19. P.B. Liu, Y. Huang, X. Zhang, Superparamagnetic Fe3O4 nanoparticles on graphene–polyaniline: synthesis, characterization and their excellent electromagnetic absorption properties, J. Alloys Compd., 596 (2014) 25–31.
  20. K. Chen, J.Y. He, Y.L. Li, X.G. Cai, K.S. Zhang, T. Liu, Y. Hu, D.Y. Lin, L.T. Kong, J.H. Liu, Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents, J. Colloid Interface Sci., 494 (2017) 307–316.
  21. M.R. Lasheen, I.Y. El-Sherif, D.Y. Sabry, S.T. El-Wakeel, M.F. El-Shahat, Adsorption of heavy metals from aqueous solution by magnetite nanoparticles and magnetite-kaolinite nanocomposite: equilibrium, isotherm and kinetic study, Desal. Wat. Treat., 57 (2016) 17421–17429.
  22. P.U. Shah, N.P. Raval, N.K. Shah, Cadmium(II) removal from an aqueous solution using CSCMQ grafted copolymer, Desal. Wat. Treat., 57 (2016) 28262–28273.
  23. C.Y. Li, Y.Y. Yan, Q.Z. Zhang, Z.B. Zhang, L.H. Huang, J.X. Zhang, Y.Q. Xiong, S.Z. Tan, Adsorption of Cd2+ and Ni2+ from aqueous single-metal solutions on graphene oxide-chitosan-poly(vinyl alcohol) hydrogels, Langmuir, 35 (2019) 4481–4490.
  24. R.-S. Norouzian, M.M. Lakouraj, Preparation and heavy metal ion adsorption behavior of novel supermagnetic nanocomposite based on thiacalix[4]arene and polyaniline: conductivity, isotherm and kinetic study, Synth. Met., 203 (2015) 135–148.
  25. A. Masoumi, M. Ghaemy, A.N. Bakht, Removal of metal ions from water using poly(MMA-co-MA)/Modified-Fe3O4 magnetic nanocomposite: isotherm and kinetic study, Ind. Eng. Chem. Res., 53 (2014) 8188−8197.
  26. S. Tabesh, F. Davar, M.R. Loghman-Estark, Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions, J. Alloys Compd., 730 (2018) 441–449.
  27. Y. Zhang, Q. Li, L. Sun, R. Tang, J.P. Zhai, High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite, J. Hazard. Mater., 175 (2010) 404–409.
  28. Y.-M. Hao, C. Man, Z.-B. Hu, Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater., 184 (2010) 392–399.
  29. J. Wang, B.L. Deng, H. Chen, X.R. Wang, J.Z. Zheng, Removal of aqueous Hg(II) by polyaniline: Sorption characteristics and mechanisms, Environ. Sci. Technol., 43 (2009) 5223–5228.
  30. R. Karthik, S. Meenakshi, Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan, Chem. Eng. J., 1 (2015) 168–177.
  31. C. Li, H.D. Duan, X.J. Wang, X. Meng, D.W. Qin, Fabrication of porous resins via solubility differences for adsorption of cadmium (II), Chem. Eng. J., 262 (2015) 250–259.
  32. S.A. Jadhav, S.V. Patil, Facile synthesis of magnetic iron oxide nanoparticles and their characterization, Front. Mater. Sci., 8 (2014) 193–198.
  33. F.A. Dawodu, K.G. Akpomie, Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay, J. Mater. Res. Technol., 3 (2014) 129–141.
  34. K.G. Akpomie, F.A. Dawodu, K.O. Adebowale, Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential, Alexandria Eng. J., 54 (2015) 757–767.
  35. R. Najam, S.A. Muzaffar, Removal of Cu(II), Zn(II) and Cd(II) ions from aqueous solutions by adsorption on walnut shell- Equilibrium and thermodynamic studies: treatment of effluents from electroplating industry, Desal. Wat. Treat., 57 (2016) 27363–27373.
  36. W.H. Lu, J.H. Li, Y.Q. Sheng, X.S. Zhang, J.M. You, L.X. Chen, One-pot synthesis of magnetic iron oxide nanoparticlemultiwalled carbon nanotube composites for enhanced removal of Cr(VI) from aqueous solution, J. Colloid Interface Sci., 505 (2017) 1134–1146.
  37. N. Kataria, V.K. Garg, Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: regeneration and mechanism, Chemosphere, 208 (2018) 818–828.
  38. S.R. Chowdhury, E.K. Yanful, Kinetics of cadmium (II) uptake by mixed maghemite-magnetite nanoparticles, J. Environ. Manage., 129 (2013) 642–651.
  39. D. Mohan, H. Kumar, A. Sarswat, M. Alexandre-Franco, C.U. Pittman Jr., Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars, Chem. Eng. J., 236 (2014) 513–528.
  40. D. Mohan, C.U. Pittman Jr., M. Bricka, F. Smith, B. Yancey, J. Mohammad, P.H. Steele, M.F. Alexandre-Franco, V. Gómez-Serrano, H. Gong, Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production, J. Colloid Interface Sci., 310 (2007) 57–73.
  41. H. Yanagisawa, Y. Matsumoto, M. Machida, Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution, Appl. Surf. Sci., 256 (2010) 1619–1623.
  42. P. Liang, T.Q. Shi, J. Li, Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample, Int. J. Environ. Anal. Chem., 84 (2004) 315–321.
  43. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Cadmium(II) uptake from aqueous solution by adsorption onto carbon aerogel using a response surface methodological approach, Ind. Eng. Chem. Res., 45 (2006) 6531–6537.
  44. J.L. Gong, L. Chen, G.M. Zeng, F. Long, J.H. Deng, Q.Y. Niu, X. He, Shellac-coated iron oxide nanoparticles for removal of cadmium(II) ions from aqueous solution, J. Environ. Sci., 24 (2012) 1165–1173.
  45. S.M. Yu, L. Zhai, Y.J. Wang, X.G. Liu, L.C. Xu, L.L. Cheng, Synthesis of magnetic chrysotile nanotubes for adsorption of Pb(II), Cd(II) and Cr(III) ions from aqueous solution, J. Environ. Chem. Eng., 3 (2015) 752–762.
  46. M.H. Beyki, M.H. Ghasemi, A. Jamali, F. Shemirani, A novel polylysine–resorcinol base γ-alumina nanotube hybrid material for effective adsorption/preconcentration of cadmium from various matrices, J. Ind. Eng. Chem., 46 (2017) 165–174.
  47. X.Q. Xue, J. Xu, S.A. Baig, X.H. Xu, Synthesis of graphene oxide nanosheets for the removal of Cd(II) ions from acidic aqueous solutions, J. Taiwan Inst. Chem. Eng., 59 (2016) 365–372.
  48. S. Mallakpour, F. Motirasoul, Bio-functionalizing of α-MnO2 nanorods with natural L-amino acids: a favorable adsorbent for the removal of Cd(II) ions, Mater. Chem. Phys., 191 (2017) 188–196.
  49. F.Y. Lyu, H.Q. Yu, T.L. Hou, L.G. Yan, X.H. Zhang, B. Du, Efficient and fast removal of Pb2+ and Cd2+ from an aqueous solution using a chitosan/Mg-Al-layered double hydroxide nanocomposite, J. Colloid Interface Sci., 539 (2019) 184–193.
  50. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kung Sven. Veten. Hand., 24 (1898) 1–39.
  51. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  52. C. Ianăşi, M. Picioruş, R. Nicola, M. Ciopec, A. Negrea, D. Nižňanský, A. Len, L. Almásy, A.-M. Putz, Removal of cadmium from aqueous solutions using inorganic porous nanocomposites, Korean J. Chem. Eng., 36 (2019) 688–700.
  53. Z.W. Wang, X.F. Zeng, X.M. Yu, H. Zhang, Z.J. Li, D. Jin, Adsorption behaviors of Cd2+ on Fe2O3/MnO2 and the effects of coexisting ions under alkaline conditions, Chin. J. Geochem., 29 (2010) 197–203.