References

  1. Q. Zheng, D.P. Durkin, J.E. Elenewski, Y. Sun, N.A. Banek, L. Hua, H. Chen, M.J. Wagner, W. Zhang, D. Shuai, Visible light-responsive graphitic carbon nitride: rational design and photocatalytic applications for water treatment, Environ. Sci. Technol., 50 (2016) 12938–12948.
  2. P. Singh, B. Priya, P. Shandilya, P. Raizada, N. Singh, B. Pare, S.B. Jonnalagadda. Photocatalytic mineralization of antibiotics using 60% WO3/BiOCl stacked to graphene sand composite and chitosan, Arab. J. Chem., (2016), (in press), https://doi.org/10.1016/j.arabjc.2016.08.005.
  3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37.
  4. H. Cao, Y. Zhu, X. Tan, H. Kang, X. Yang, C. Li, Fabrication of TiO2/CdS composite fiber via an electrospinning method, New J. Chem., 34 (2010) 1116–1119.
  5. S.C. Yan, S.B. Lv, Z.S. Li, Z.G. Zou, Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities, Dalton Trans., 39 (2010) 1488–1491.
  6. V. Hasija, P. Raizada, A. Sudhaik, K. Sharma, A. Kumar, P. Singh, S.B. Jonnalagadda, V.K. Thakur, Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review, Appl. Mater. Today, 15 (2019) 494–524.
  7. A. Habibi-Yangjeh, M. Mousavi, Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: novel magnetic photocatalysts with drastically enhanced performance under visible-light, Adv. Powder Technol., 29 (2018) 1379–1392.
  8. S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Bandegharaei, V. Kumar Thakur, Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review, J. Clean. Prod., 228 (2019) 755–769.
  9. P. Shandilya, D. Mittal, M. Soni, P. Raizada, A. Hosseini-Bandegharaei, A.K. Saini, P. Singh, Fabrication of fluorine doped graphene and SmVO4 based dispersed and adsorptive photocatalyst for abatement of phenolic compounds from water and bacterial disinfection, J. Clean. Prod., 203 (2018) 386–399.
  10. W.T. Dong, C.S. Zhu, Optical properties of surface-modified BO nanoparticles, J. Phys. Chem. Solids, 64 (2003) 265–271.
  11. B. Priya, P. Raizada, N. Singh, P. Thakur, P. Singh, Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using BO/BiOCl supported on graphene sand composite and chitosan, J. Colloid Interface Sci., 479 (2016) 271–283.
  12. P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, V.K. Gupta, A.H. Bandegharaei, S. Agrawal, Ag3PO4 modified phosphorus and sulphur co-doped graphitic carbon nitride as a direct Z-scheme photocatalyst for 2, 4-dimethyl phenol degradation, J. Photochem. Photobiol. A: Chem., 374 (2019) 22–35.
  13. R. Chen, Z.R. Shen, H. Wang, H.J. Zhou, Y.P. Liu, D.T. Ding, T.H. Chen, Fabrication of mesh-like bismuth oxide single crystalline nanoflakes and their visible light photocatalytic activity, J. Alloys Comp., 9 (2011) 2588–2596.
  14. S. Iyyapushpam, S.T. Nishanthi, D.P. Padiyan, Photocatalytic degradation of methyl orange using α-BO prepared without surfactant, J. Alloys Comp., 563 (2013) 104–107.
  15. K. Sharma, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, P. Thakur, P. Singh, Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review, J. Ind. Eng. Chem., 78 (2019) 1–20.
  16. M.L. Guan, D.K. Ma, S.W. Hu, Y.J. Chen, S.M. Huang, From hollow olive-shaped BiVO4 to n-p Core-Shell BiVO4@ BO microspheres: controlled synthesis and enhanced visible-light responsive photocatalytic properties, Inorg. Chem., 50 (2010) 800–805.
  17. J. Zhu, S. Wang, J. Wang, D. Zhang, H. Li, Highly active and durable BO/TiO2 visible photocatalyst in flower-like spheres with surface-enriched BO quantum dots, Appl. Catal., B, 102 (2011) 120–125.
  18. A. Sudhaik, P. Raizada, P. Shandilya, D.Y. Jeong, J.H. Lim, P. Singh, Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants, J. Ind. Eng. Chem., 67 (2018) 28–51.
  19. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76–80.
  20. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, D. Seifzadeh, Graphitic carbon nitride nanosheets coupled with carbon dots and BiOI nanoparticles: boosting visible-light-driven photocatalytic activity, J. Taiwan Inst. Chem. Eng., 87 (2018) 98–111.
  21. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, M. Abedi, Decoration of carbon dots and AgCl over g-C3N4 nanosheets: novel photocatalysts with substantially improved activity under visible light, Sep. Purif. Technol., 199 (2018) 64–77.
  22. Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ran, J. Wang, M. Li, J. Shi, Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light, J. Mater. Chem. A, 3 (2015) 3862–3867.
  23. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, K. Nakata, Decoration of carbon dots over hydrogen peroxide treated graphitic carbon nitride: exceptional photocatalytic performance in removal of different contaminants under visible light, J. Photochem. Photobiol. A: Chem., 374 (2019) 161–172.
  24. P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, A.K. Saini, V.K. Gupta, J.H. Lim, H. Jung, A.H. Bandegharaei, Fabrication of Ag3VO4 decorated phosphorus and sulphur co-doped graphitic carbon nitride as a high-dispersed photocatalyst for phenol mineralization and E. coli disinfection, Sep. Purif. Technol., 212 (2019) 887–900.
  25. P. Shandilya, D. Mittal, A. Sudhaik, M. Soni, P. Raizada, A.K. Saini, P. Singh, GdVO4 modified fluorine doped graphene nanosheets as dispersed photocatalyst for mitigation of phenolic compounds in aqueous environment and bacterial disinfection, Sep. Purif. Technol,. 210 (2019) 804–816.
  26. B. Pare, P. Singh, S.B. Jonnalagadda, Degradation and mineralization of victoria blue B dye in a slurry photoreactor using advanced oxidation process, J. Sci. Ind. Res., 68 (2009) 724–729.
  27. B. Pare, P. Singh, S.B. Jonnalagadda, Visible light induced heterogeneous advanced oxidation process to degrade pararosanilin dye in aqueous suspension of ZnO, Ind. J. Chem. Sect. A, 47 (2008) 830–835.
  28. P. Raizada, A. Sudhaik, P. Singh, A. Hosseini-Bandegharaei, P. Thakur, Converting type II AgBr/VO into ternary Z scheme photocatalyst via coupling with phosphorus doped g-C3N4 for enhanced photocatalytic activity, Sep. Purif. Technol., 227 (2019) 115692.
  29. C. Wang, C. Shao, Y. Liu, L. Zhang, Photocatalytic properties BiOCl and BO nanofibers prepared by electrospinning, Scripta Mater., 59 (2008) 332–335.
  30. Y. Li, S. Wu, L. Huang, H. Xu, R. Zhang, M. Qu, Q. Gao, H. Li, GCN modified BO composites with enhanced visiblelight photocatalytic activity, J. Phys. Chem. Solid, 76 (2015) 112–119.
  31. Y. Zhang, J. Lu, M.R. Hoffmann, Q. Wang, Y. Conga, Q. Wang, H. Jin, Synthesis of GCN/BO/TiO2 composite nanotubes: Enhanced activity under visible light irradiation and improved photoelectrochemical activity, RSC Adv., 5 (2015) 48983–48991.
  32. L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Visible-light-induced WO3/GCN composites with enhanced photocatalytic activity, Dalton Trans., 42 (2013) 8606–8616.
  33. T. Tyborski, C. Merschjann, S. Orthmann, F. Yang, M.C. Lux-Steiner, T. Schedel-Niedrig, Tunable optical transition in polymeric carbon nitrides synthesized via bulk thermal condensation, J. Phys.: Condens. Matter, 24 (2012) 162201.
  34. J. Zhang, Y. Li, P. Zhu, D. Huang, S. Wu, Q. Cui, G. Zou, Graphitic carbon nitride materials synthesized via reactive pyrolysis routes and their properties, Diam. Relat. Mater., 20 (2011) 385–388.
  35. A.F. Gualtieri, S. Immovilli, M. Prudenziati, Powder X-ray diffraction data for the new polymorphic compound ω-BO, Powder Diffr., 12 (1997) 90–92.
  36. O. Pawar, N. Deshpande, S. Dagade, S. Waghmode, P.N. Joshi, Green synthesis of silver nanoparticles from purple acid phosphatase apoenzyme isolated from a new source, Limonia acidissima, J. Exp. Nanosci., 11 (2015) 28–37.
  37. H. Katsumata, Y. Tachi, T. Suzuki, S. Kaeco, Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts, RSC Adv., 4 (2014) 21405–21409.
  38. S. Kumar, T. Surendar, B. Kumar, A. Baruah, V. Shanker, Synthesis of magnetically separable and recyclable g-C3N4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation, J. Phys. Chem. C, 117 (2013) 26135–26143.
  39. Q. Zhuang, L. Sun, Y. Ni, One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions, Talanta, 164 (2017) 458–462.
  40. R. Irmawati, M.N.N. Nasriah, Y.H. Taufig-Yap, S.B.A. Hamid, Characterization of bismuth oxide catalysts prepared from bismuth trinitrate pentahydrate: influence of bismuth concentration, Catal. Today, 93–95 (2004) 701–709.
  41. V. Fruth, M. Popa, D. Berger, C.M. Ionica, M. Jitianu, Phases investigation in the antimony doped BO system, J. Eur. Ceram. Soc., 24 (2004) 1295–1299.
  42. S.R.G. Carrazan, C. Martin, V. Rives, R. Vidal, An FT-IR spectroscopy study of the adsorption and oxidation of propene on multiphase Bi, Mo and Co catalysts, Spectrochim. Acta Part A, 52 (1996) 1107–1118.
  43. M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, M.M. Abdullah, Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst, Appl. Surf. Sci., 258 (2012) 7515–7522.
  44. S.B. Khan, M. Faisal, M.M. Rahman, A. Jamal, Low-temperature growth of ZnO nanoparticles: photocatalyst and acetone sensor, Talanta, 85 (2011) 943–949.
  45. P. Niu, G. Liu, H.M. Cheng, Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride, J. Phys. Chem. C, 116 (2012) 11013–11018.
  46. S. Ma, S. Zhan, Y. Jia, Q. Shi, Q. Zhou, Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light, Appl. Catal., B, 186 (2016) 77–87.
  47. W.J. Shan, Y. Hu, Z.G. Bai, M.M. Zheng, C.H. Wei, In situ preparation of g-C3N4/ bismuth-based oxide nanocomposites with enhanced photocatalytic activity, Appl. Catal., B, 188 (2016) 1–12.
  48. M. Sun, Y. Wang, Y. Shao, Y.H. He, Q. Zheng, H.K. Liang, T. Yan, B. Du, Fabrication of a novel Z-scheme g-C3N4/Bi4O7 heterojunction photocatalyst with enhanced visible light-driven activity toward organic pollutants, J. Colloid Interface Sci., 501 (2017) 123–132.
  49. H. Zou, M.X. Song, F.C. Yi, L. Bian, P. Liu, S. Zhang, Simulated sunlight-activated photocatalysis of Methyl Orange using carbon and lanthanum co-doped BO-TiO2 composite, J. Alloy. Compd., 680 (2016) 54–59.
  50. S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, R. Rai, M.A. Valente, P. Singh, Superparamagnetic MnFe2O4 dispersed over graphitic carbon sand composite and bentonite as magnetically recoverable photocatalyst for antibiotic mineralization, Sep. Purif. Technol., 172 (2017) 498–511.
  51. P. Shandilya, D. Mittal, M. Soni, P. Raizada, J.H. Lim, D.Y. Jeong, R.P. Dewedi, A.K. Saini, P. Singh, Islanding of EuVO4 on high dispersed fluorine doped few layered graphene sheets for efficient photocatalytic mineralization of phenolic compounds and bacterial disinfection, J. Taiwan Inst. Chem. Eng., 93 (2018) 528–542.
  52. P. Raizada, J. Kumari, P. Shandilya, R. Dhiman, V.P. Singh, P. Singh, Magnetically retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin, Process Saf. Environ. Prot., 106 (2017) 104–116.
  53. A. Sudhaik, P. Raizada, P. Shandilya, P. Singh, Magnetically recoverable graphitic carbon nitride and NiFe2O4 based magnetic photocatalyst for degradation of oxytetracycline antibiotic in simulated wastewater under solar light, J. Environ. Chem. Eng., 6 (2018) 3874–3883.
  54. P. Raizada, B. Priya, P. Thakur, P. Singh, Solar light induced photodegradation of oxytetracycline using Zr doped TiO2/CaO based nanocomposite, Indian J. Chem., 55 (2016) 803–809.
  55. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, J. Environ. Manage., 92 (2011) 311–330.
  56. W. Bahnemann, M. Muneer, M.M. Haque, Titanium dioxidemediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions, Catal. Today, 124 (2007) 133–148.
  57. J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53 (1999) 115–129.
  58. N. Daneshvar, S. Aber, A. Khani, A.R. Khataee, Study of imidacloprid removal from aqueous solution by adsorption onto granular activated carbon using an on–line spectrophotometric analysis system, J. Hazard. Mater., 144 (2007) 47–51.
  59. P. Singh, Sonu, P. Raizada, A. Sudhaik, P. Shandilya, P. Thakur, S. Agarwal, V.K. Gupta, Enhanced photocatalytic activity and stability of AgBr/BiOBr/graphene heterojunction for phenol degradation under visible light, J. Saudi Chem. Soc., 23 (2018) 586–599.
  60. P. Raizada, P. Singh, A. Kumar, G. Sharma, B. Pare, S.B. Jonnalagadda, P. Thakur, Solar photocatalytic activity of nano- ZnO supported on activated carbon or brick grain particles: role of adsorption in dye degradation, Appl. Catal., A, 486 (2014) 159–169.
  61. B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, P. Singh, Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl, J. Mol. Catal. A, 423 (2016) 400–413.
  62. P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, P. Thakur, H. Jung, Visible light assisted photodegradation of 2, 4-dinitrophenol using Ag2CO3 loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater, Arab. J. Chem., (2018), (in press), https://doi.org/10.1016/j.arabjc.2018.10.004.
  63. B. Pare, S.B. Jonnalagadda, H. Tomar, P. Singh, V.W. Bhagwat, ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation, Desalination, 232 (2008) 80–90.
  64. T. Ding, D. Jacobs, B. Lavine, Liquid chromatography-mass spectrometry identification of imidacloprid photolysis products, Microchem. J., 99 (2011) 535–541.
  65. M. Turabik, N. Oturan, B. Gözmen, M.A. Oturan, Efficient removal of insecticide “imidacloprid” from water by electrochemical advanced oxidation processes, Environ. Sci. Pollut. Res., 21 (2014) 8387−8397.
  66. S.F. Chen, Y.F. Hu, S.G. Meng, X.L. Fu, Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3, Appl. Catal., B, 150−151 (2014) 564−573.
  67. H.X. Zhao, H.T. Yu, X. Quan, S. Chen, Y.B. Zhang, H.M. Zhao, H. Wang, Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation, Appl. Catal., B, 152−153 (2014) 46−50.
  68. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of Rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuir, 26 (2010) 3894−3901.
  69. H. Lee, W.Y. Choi, Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms, Environ. Sci. Technol., 36 (2002) 3872−3878.
  70. W.J. Li, D.Z. Li, Y.M. Lin, P.X. Wang, W. Chen, X.Z. Fu, Y. Shao, Evidence for the active species involved in the photodegradation process of methyl orange on TiO2, J. Phys. Chem. C, 116 (2012) 3552−3560.