References

  1. R. Davarnejad, S. Nasiri, Slaughterhouse wastewater treatment using an advanced oxidation process: optimization study, Environ. Pollut., 223 (2017) 1–10.
  2. Z. Rinquest, M. Basitere, S.K.O. Ntwampe, M. Njoya, Poultry slaughterhouse wastewater treatment using a static granular bed reactor coupled with single stage nitrification-denitrification and ultrafiltration systems, J. Water Process Eng., 29 (2019) 100778.
  3. C.F. Bustillo-Lecompte, M. Mehrvar, Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: modeling, optimization, and cost-effectiveness analysis, J. Environ. Manage., 182 (2016) 651–666.
  4. M.M. Luan, G.L. Jing, Y.J. Piao, D.B. Liu, L.F. Jin, Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation, Arabian J. Chem., 10 (2017) S769–S776.
  5. M. Reilly, A.P. Cooley, D. Tito, S.A. Tassou, M.K. Theodorou, Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters, Energy Procedia, 161 (2019) 343–351.
  6. J. Martí-Herrero, R. Alvarez, T. Flores, Evaluation of the low technology tubular digesters in the production of biogas from slaughterhouse wastewater treatment, J. Cleaner Prod., 199 (2018) 633–642.
  7. P.D. Jensen, S.D. Yap, A. Boyle-Gotla, J. Janoschka, C. Carney, M. Pidou, D.J. Batstone, Anaerobic membrane bioreactors enable high rate treatment of slaughterhouse wastewater, Biochem. Eng. J., 97 (2015) 132–141.
  8. G. Wendimu, F. Zewge, E. Mulugeta, Aluminium-iron-amended activated bamboo charcoal (AIAABC) for fluoride removal from aqueous solutions, J. Water Process Eng., 16 (2017) 123–131.
  9. L. Sellaoui, E.C. Lima, G.L. Dotto, A.B. Lamine, Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies, J. Mol. Liq., 234 (2017) 375–381.
  10. M.E. de Oliveira Ferreira, B.G. Vaz, C.E. Borba, C.G. Alonso, I.C. Ostrosk, Modified activated carbon as a promising adsorbent for quinoline removal, Microporous Mesoporous Mater., 277 (2019) 208–216.
  11. Z.M. Gu, J. Fang, B.L. Deng, Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal, Environ. Sci. Technol., 39 (2005) 3833–3843.
  12. J. Jacyna, M. Kordalewska, M.J. Markuszewski, Design of experiments in metabolomics-related studies: an overview, J. Pharm. Biomed. Anal., 164 (2019) 598–606.
  13. P.S. Ardekani, H. Karimi, M. Ghaedi, A. Asfaram, M.K. Purkait, Ultrasonic assisted removal of methylene blue on ultrasonically synthesized zinc hydroxide nanoparticles on activated carbon prepared from wood of cherry tree: experimental design methodology and artificial neural network, J. Mol. Liq., 229 (2017) 114–124.
  14. APHA (American Public Health Association), Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association/American Water, Works Association/Water Environment Federation, Washington, D.C., 2005.
  15. M.J.K. Bashir, M.H. Tham, J.W. Lim, C.A. Ng, S.S. Abu Amr, Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process, Water Sci. Technol., 73 (2016) 2704–2712.
  16. S.C. Anijiofor, N.N.N. Daud, S. Idrus, H.C. Man, Recycling of fishpond wastewater by adsorption of pollutants using aged refuse as an alternative low-cost adsorbent, Sustainable Environ. Res., 28 (2018) 315–321.
  17. M.-P. Mazhari, M. Hamadanian, M. Mehipour, V. Jabbari, Central composite design (CCD) optimized synthesis of Fe3O4@SiO2@AgCl/Ag/Ag2S as a novel magnetic nano-photocatalyst for catalytic degradation of organic pollutants, J. Environ. Chem. Eng., 6 (2018) 7284–7293.
  18. A.G. Khorram, N. Fallah, Treatment of textile dyeing factory wastewater by electrocoagulation with low sludge settling time: Optimization of operating parameters by RSM, J. Environ. Chem. Eng., 6 (2018) 635–642.
  19. A. Suárez-Escobar, A. Pataquiva-Mateus, A. López-Vasquez, Electrocoagulation—photocatalytic process for the treatment of lithographic wastewater. Optimization using response surface methodology (RSM) and kinetic study, Catal. Today, 266 (2016) 120–125.
  20. S. Ahmadzadeh, M. Dolatabadi, Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for groundwater treatment, J. Mol. Liq., 254 (2018) 76–82.
  21. A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arabian J. Chem., 10 (2017) S3381–S3393.
  22. B. Abussaud, H.A. Asmaly, Ihsanullah, T.A. Saleh, V.K. Gupta, T. Laoui, M.A. Atieh, Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide, J. Mol. Liq., 213 (2016) 351–359.
  23. H.M.B. Eustáquio, C.W. Lopes, R.S. da Rocha, B.D. Cardoso, S.B.C. Pergher, Modification of activated carbon for the adsorption of humic acid, Adsorpt. Sci. Technol., 33 (2015) 117–126.
  24. T.S. Kazeem, S.A. Lateef, S.A. Ganiyu, M. Qamaruddin, A. Tanimu, K.O. Sulaiman, S.M.S. Jillani, K. Alhooshani, Aluminium-modified activated carbon as efficient adsorbent for cleaning of cationic dye in wastewater, J. Cleaner Prod., 205 (2018) 303–312.
  25. H.W. Cheng, J. Ai, W.J. Zhang, X.M. Fu, Y.J. Duc, D.S. Wang, Preparation of biological activated carbon (BAC) using aluminum salts conditioned sludge cake for the bio-refractory organic contaminants removal from anaerobically digested liquor, Colloids Surf., A, 561 (2019) 89–100.
  26. M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V.K. Garg, M. Sillanpää, Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution, Water Res. Ind., 20 (2018) 54–74.
  27. T. Shirai, H. Watanabe, M. Fuji, M. Takahashi, Structural properties and surface characteristics on aluminum oxide powders, Nagoya Inst. Technol. Repository Syst., 9 (2010) 23–31.
  28. N. Ilankoon, Use of iron oxide magnetic nanosorbents for Cr(VI) removal from aqueous solutions: a review, Int. J. Eng. Res. Appl., 4 (2014) 55–63.
  29. P.N. Dave, L.V. Chopda, Application of iron oxide nanomaterials for the removal of heavy metals, J. Nanotechnol., 2014 (2014) 14 p, http://dx.doi.org/10.1155/2014/398569.
  30. N. Ghasemi, M. Ghasemi, S. Moazeni, P. Ghasemi, N.S. Alharbi, V.K. Gupta, S. Agarwal, I.V. Burakova, A.G. Tkachev, Zn (II) removal by amino-functionalized magnetic nanoparticles: kinetics, isotherm, and thermodynamic aspects of adsorption, J. Ind. Eng. Chem., 62 (2018) 302–310.
  31. M.O. Ojemaye, O.O. Okoh, A.I. Okoh, Surface modified magnetic nanoparticles as efficient adsorbents for heavy metal removal from wastewater: progress and prospects, Mater. Express, 7 (2017) 439–456.
  32. G. Selvaraju, N.K.A. Bakar, Production of a new industrially viable green-activated carbon from Artocarpus integer fruit processing waste and evaluation of its chemical, morphological and adsorption properties, J. Cleaner Prod., 141 (2017) 989–999.