References

  1. R. Dittmeyer, J.-D. Grunwaldt, A. Pashkova, A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide, Catal. Today, 248 (2015) 149–159.
  2. V. Paunovic, J.C. Schouten, T.A. Nijhuis, Direct synthesis of hydrogen peroxide using concentrated H2 and O2 mixtures in a wall-coated microchannel – kinetic study, Appl. Catal., A, 505 (2015) 249–259.
  3. M.-g. Seo, S. Kim, D.-W. Lee, H.E. Jeong, K.-Y. Lee, Core–shell structured, nano-Pd-embedded SiO2–Al2O3 catalyst (Pd@SiO2– Al2O3) for direct hydrogen peroxide synthesis from hydrogen and oxygen, Appl. Catal., A, 511 (2016) 87–94.
  4. S. Park, J. Lee, J.H. Song, T.J. Kim, Y.-M. Chung, S.-H. Oh, I.K. Song, cM-5 catalysts: effect of Brönsted acidity, J. Mol. Catal., A, 363–364 (2012) 230–236.
  5. E. Pizzutilo, O. Kasian, C.H. Choi, S. Cherevko, G.J. Hutchings, K.J.J. Mayrhofer, S.J. Freakley, Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production, Chem. Phys. Lett., 683 (2017) 436–442.
  6. D. Gudarzi, W. Ratchananusorn, I. Turunen, T. Salmi, M. Heinonen, Preparation and study of Pd catalysts supported on activated carbon cloth (ACC) for direct synthesis of H2O2 from H2 and O2, Top. Catal., 56 (2013) 527–539.
  7. B. Hu, W. Deng, R. Li, Q. Zhang, Y. Wang, F. Delplanque-Janssens, D. Paul, F. Desmedt, P. Miquel, Carbon-supported palladium catalysts for the direct synthesis of hydrogen peroxide from hydrogen and oxygen, J. Catal., 319 (2014) 15–26.
  8. C. Samanta, Direct synthesis of hydrogen peroxide from hydrogen and oxygen: an overview of recent developments in the process, Appl. Catal., 350 (2008) 133–149.
  9. F. Menegazzo, M. Signoretto, M. Manzoli, F. Boccuzzi, G. Cruciani, F. Pinna, G. Strukul, Influence of the preparation method on the morphological and composition properties of Pd–Au/ZrO2 catalysts and their effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen, J. Catal., 268 (2009) 122–130.
  10. V. Paunovic, J.C. Schouten, T.A. Nijhuis, Direct synthesis of hydrogen peroxide in a wall-coated microchannel reactor over Au–Pd catalyst: a performance study, Catal. Today, 248 (2015) 160–168.
  11. T. Inoue, J. Adachi, K. Ohtaki, M. Lu, S. Murakami, X. Sun, D.F. Wang, Direct hydrogen peroxide synthesis using glass microfabricated reactor – paralleled packed bed operation, Chem. Eng. J., 278 (2015) 517–526.
  12. J.W. Lee, J.K. Kim, T.H. Kang, E.J. Lee, I.K. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on heteropolyacid-containing ordered mesoporous carbon, Catal. Today, 293–294 (2017) 49–55.
  13. W. Ratchananusorn, D. Gudarzi, I. Turunen, Catalytic direct synthesis of hydrogen peroxide in a novel microstructured reactor, Chem. Eng. Process., 84 (2014) 24–30.
  14. M.S. Yalfani, S. Contreras, F. Medina, J.E. Sueiras, Hydrogen substitutes for the in situ generation of H2O2: an application in the Fenton reaction, J. Hazard. Mater., 192 (2011) 340–346.
  15. B. Puértolas, A.K. Hill, T. García, B. Solsona, L. Torrente-Murciano, In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: a mini-review, Catal. Today, 248 (2015) 115–127.
  16. J.K. Edwards, J. Pritchard, P.J. Miedziak, M. Piccinini, A.F. Carley, Q. He, C.J. Kiely, G.J. Hutchings, The direct synthesis of hydrogen peroxide using platinum promoted gold–palladium catalysts, Catal. Sci. Technol., 4 (2014) 3244–3250.
  17. J.K. Edwards, S.J. Freakley, R.J. Lewis, J.C. Pritchard, G.J. Hutchings, Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen, Catal. Today, 248 (2015) 3–9.
  18. S.J. Freakley, Q. He, J.H. Harrhy, L. Lu, D.A. Crole, D.J. Morgan, E.N. Ntainjua, J.K. Edwards, A.F. Carley, A.Y. Borisevich, C.J. Kiely, G.J. Hutchings, Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity, Science, 6276 (2016) 965–968.
  19. M.S. Yalfani, S. Contreras, F. Medina, J. Sueiras, Phenol degradation by Fenton’s process using catalytic in situ generated hydrogen peroxide, Appl. Catal., B, 89 (2009) 519–526.
  20. S. Yuan, Y. Fan, Y. Zhang, M. Tong, P. Liao, Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-Fenton degradation of Rhodamine B, Environ. Sci. Technol., 45 (2011) 8514–8520.
  21. S. Park, J.H. Choi, T.J. Kim, Y.-M. Chung, S.-H. Oh, I.K. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd/CsXH3-XPW12O40/MCF (X = 1.7, 2.0, 2.2, 2.5, and 2.7) catalysts, J. Mol. Catal., A, 353–354 (2012) 37–43.
  22. M.-g. Seo, S. Kim, H.E. Jeong, D.-W. Lee, K.-Y. Lee, A yolk– shell structured Pd@void@ZrO2 catalyst for direct synthesis of hydrogen peroxide from hydrogen and oxygen, J. Mol. Catal., A, 413 (2016) 1–6.
  23. V.R. Choudhary, A.G. Gaikwad, S.D. Sansare, Activation of supported Pd metal catalysts for selective oxidation of hydrogen to hydrogen peroxide, Catal. Lett., 83 (2002) 235–239.
  24. S. Fan, J. Yi, L. Wang, Z. Mi, Direct synthesis of hydrogen peroxide from H2/O2 using Pd/Al2O3 catalysts, React. Kinet. Catal. Lett., 92 (2007) 175–182.
  25. H.E. Jeong, S. Kim, M.-g. Seo, D.-W. Lee, K.-Y. Lee, Catalytic activity of Pd octahedrons/SiO2 for the direct synthesis of hydrogen peroxide from hydrogen and oxygen, J. Mol. Catal., A, 420 (2016) 88–95.
  26. S. Kim, D.-W. Lee, K.-Y. Lee, Shape-dependent catalytic activity of palladium nanoparticles for the direct synthesis of hydrogen peroxide from hydrogen and oxygen, J. Mol. Catal., A, 391 (2014) 48–54.
  27. J.M. Aquino, R.C. Rocha-Filho, L.A.M. Ruotolo, N. Bocchi, S.R. Biaggio, Electrochemical degradation of a real textile wastewater using β-PbO2 and DSAR anodes, Chem. Eng. J., 251 (2014) 138–145.
  28. J.M. Aquino, R.C. Rocha-Filho, N. Bocchi, S.R. Biaggio, Electrochemical degradation of the Reactive Red 141 dye on a β-PbO2 anode assessed by the response surface methodology, J. Braz. Chem. Soc., 21 (2010) 324–330.
  29. H. Zhang, Y.A. Alhamed, W. Chu, Z. Ye, A. AlZahrani, L. Petrov, Controlling Co-support interaction in Co/MWCNTs catalysts and catalytic performance for hydrogen production via NH3 decomposition, Appl. Catal., A, 464–465 (2013) 156–164.
  30. J. Yuan, Y. Zhu, Y. Li, L. Zhang, L. Li, Effect of multi-wall carbon nanotubes supported palladium addition on hydrogen storage properties of magnesium hydride, Int. J. Hydrogen Energy, 39 (2014) 10184–10194.
  31. O. Arciniega Cano, C.A. Rodríguez González, J.F. Hernández Paz, P. Amezaga Madrid, P.E. García Casillas, A.L. Martínez Hernández, C.A. Martínez Pérez, Catalytic activity of palladium nanocubes/multiwalled carbon nanotubes structures for methyl orange dye removal, Catal. Today, 282 (2017) 168–173.
  32. K. Wu, X. Mao, Y. Liang, Y. Chen, Y. Tang, Y. Zhou, J. Lin, C. Ma, T. Lu, Multiwalled carbon nanotubes supported palladium ephosphorus nanoparticles for ethanol electrooxidation in alkaline solution, J. Power Sources, 219 (2012) 258–262.
  33. K. Ding, Y. Zhao, L. Liu, Y. Li, L. Liu, Y. Wang, H. Gu, H. Wei, Z. Guo, Multi-walled carbon nanotubes supported Pd composite nanoparticles hydrothermally produced from technical grade PdO precursor, Electrochim. Acta, 176 (2015) 1256–1265.
  34. H. An, H. Cui, D. Zhou, D. Tao, B. Li, J. Zhai, Q. Li, Synthesis and performance of Pd/SnO2–TiO2/MWCNT catalysts for direct formic acid fuel cell application, Electrochim. Acta, 92 (2013) 176–182.
  35. B. Lesiak, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, B. Mierzwa, A. Mikolajczuk-Zychora, K. Juchniewicz, A. Borodzinski, J. Zemek, P. Jiricek, Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell, Appl. Surf. Sci., 387 (2016) 929–937.
  36. M. Majlesi, S.M. Mohseny, M. Sardar, S. Golmohammadi, A. Sheikhmohammadi, Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes, Sustain. Environ. Res., 26 (2016) 287–290.
  37. D. Fu, X. Wang, J. Liu, A. Zhang, The investigate and analysis about background value of water environmental in the soure area of Yangtze River (In Chinese), Environ. Mon. in China, 14 (1998) 9–11.
  38. X. He, Y. Wu, J. Zhou, H. Bing, Hydro-chemical characteristics and quality assessment of surface water in Gongga Mountain region (in Chinese), Environ. Sci., 37 (2016) 3798–3805.
  39. A. Sheikhmohammadi, A. Yazdanbakhsh, G. Moussavi, A. Eslami, M. Rafiee, M. Sardar, M. Almasian, Degradation and COD removal of trichlorophenol from wastewater using sulfite anion radicals in a photochemical process combined with a biological reactor: mechanisms, degradation pathway, optimization and energy consumption, Process Saf. Environ., 123 (2019) 263–271.
  40. H. Godini, A. Sheikhmohammadi, L. Abbaspour, R. Heydari, G.S. Khorramabadi, M. Sardar, Z. Mahmoudi, Energy consumption and photochemical degradation of Imipenem/Cilastatin antibiotic by process of UVC/Fe2+/H2O2 through response surface methodology, Optik, 182 (2019) 1194–1203.