References
  -  A.M. Bernardes, M.A.S. Rodrigues, J.Z. Ferreira, Eds.,
    Electrodialysis and Water Reuse: Novel Approaches, Springer-Verlag, Berlin, Heidelberg, 2014. 
-  H. Strathmann, Ion-Exchange Membrane processes: Their
    Principle and Practical Applications, Balaban Desalination
    Publications, Hopkinton, MA, 2016. 
-  L. Alvarado, A. Chen, Electrodeionization: principles, strategies
    and applications, Electrochim. Acta, 132 (2014) 583–597. 
-  J. Wood, J. Gifford, J. Arba, M. Shaw, Production of ultrapure
    water by continuous electrodeionization, Desalination, 250
    (2010) 973–976. 
-  P.B. Spoor, L. Grabovska, L. Koene, L.J. Janssen, W.R. ter Veen,
    Pilot scale deionisation of a galvanic nickel solution using a
    hybrid ion-exchange/electrodialysis system, Chem. Eng. J.,
    89 (2002) 193–202. 
-  Y.S. Dzyaz’ko, L.M. Rozhdestvenskaya, A.V. Pal’chik, Recovery
    of nickel ions from dilute solutions by electrodialysis combined
    with ion exchange, Russ. J. Appl. Chem., 75 (2005) 414–421. 
-  V.V. Nikonenko, A.V. Kovalenko, M.K. Urtenov, N.D. Pismenskaya,
    J. Han, Ph. Sistat, G. Pourcelly, Desalination at overlimiting
    currents: state-of-the-art and perspectives, Desalination,
    342 (2014) 85–106. 
-  V.V. Nikonenko, N.D. Pismenskaya, E.I. Belova, Ph. Sistat,
    P. Huguet, G. Pourcelly, Ch. Larchet, Intensive current transfer
    in membrane systems: modelling, mechanisms and application
    in electrodialysis, Adv. Colloid Interface Sci., 160 (2010) 101–123. 
-  V.I. Zabolotskiy, A.Yu. But, V.I. Vasil’eva, E.M. Akberova,
    S.S. Melnikov, Ion transport and electrochemical stability of
    strongly basic anion-exchange membranes under high current
    electrodialysis conditions, J. Membr. Sci., 526 (2017) 60–72. 
-  T. Sata, Ion Exchange Membranes. Preparation, Characterization,
    Modification and Application, RSC, Cambridge, 2004. 
-  D.M. Davenport, A. Deshmukh, J.R. Werber, M. Elimelech,
    High-pressure reverse osmosis for energy-efficient hypersaline
    brine desalination: current status, design considerations, and
    research needs, Environ. Sci. Technol. Lett., 5 (2018) 467–475. 
-  V.G. Good, ed., Sustainable Desalination Handbook, Plant
    Selection, Design and Implementation, Butterworth-Heinemann,
    Oxford, 2018. 
-  Y. Oren, Capacitive deionization (CDI) for desalination
    and water treatment—past, present and future (a review),
    Desalination, 228 (2008) 10–29. 
-  F.A. Al Marzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal,
    Application of capacitive deionisation in water desalination: a
    review, Desalination, 342 (2014) 3–15. 
-  Yu.M. Volfkovich, D.A. Bograchev, A.A. Mikhalin, A.Yu.
    Rychagov, V.E. Sosenkin, D. Park, Capacitive deionization of
    aqueous solutions: modeling and experiments, Desal. Wat.
    Treat., 69 (2017) 130–141. 
-  Yu. M. Volfkovich, D.A. Bograchev, A.A. Mikhalin, A.Yu.
    Rychagov, V.E. Sosenkin, V.V. Milyutin, D. Park. Electrodes
    based on carbon nanomaterials: structure, properties and
    application to capacitive deionization in static cells, Springer
    Proceedings in Physics, 210 (2018) 127–146. 
-  Yu.M. Volfkovich, А.Yu. Rychagov, А.А. Mikhalin, М.М. Kardash,
    N.А. Kononenko, D.V. Ainetdinov, S.A. Shkirskaya,
    V.Е. Sosenkin, Capacitive deionization of water using mosaic
    membrane, Desalination, 426 (2018) 1–10. 
-  R. Zhao, P.M. Biesheuvel, A. van der Wal, Energy consumption
    and constant current operation in membrane capacitive deionization,
    Energy Environ. Sci., 5 (2012) 9520–9527. 
-  B.E. Conway, Electrochemical Supercapacitors: Scientific
    Fundamentals and Technological Applications, Springer, New
    York, 1999. 
-  V.S. Bagotsky, A.M. Skundin, Yu.M. Volfkovich, Electrochemical
    Power Sources: Batteries, Fuel Cells, Supercapacitors, John
    Wiley & Sons Inc., New Jersey, 2015. 
-  M.D. Andelman, Charge Barrier Flow-Through Capacitor,
    CA Patent 2444390, 2002. 
-  J.-B. Lee, K.-K. Park, H.-M. Eum, C.W. Lee, Desalination of a
    thermal power plant wastewater by membrane capacitive
    deionization, Desalination, 196 (2006) 125–134. 
-  P.M. Biesheuvel, A. van der Wal, Membrane capacitive
    deionization, J. Membr. Sci., 346 (2010) 256–262. 
-  M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization
    as an electrochemical means of saving energy and delivering
    clean water. Comparison to present desalination practices: will
    it compete?, Electrochim. Acta, 55 (2010) 3845–3856. 
-  W. Tang, D. He, C. Zhang, T.D. Waite, Optimization of
    sulfate removal from brackish water by membrane capacitive
    deionization (MCDI), Water Res., 121 (2017) 302–310. 
-  A. Hassanvand, G.Q. Chen, P.A. Webley, S.E. Kentish,
    Improvement of MCDI operation and design through experiment
    and modelling: regeneration with brine and optimum
    residence time, Desalination, 417 (2017) 36–51. 
-  J.-S. Kim, J.-H. Choi, Fabrication and characterization of a
    carbon electrode coated with cation-exchange polymer for the
    membrane capacitive deionization applications, J. Membr. Sci.,
    355 (2010) 85–90. 
-  H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, Electrosorptive
    desalination by carbon nanotubes and nanofibres electrodes
    and ion-exchange membranes, Water Res., 42 (2008) 4923–4928. 
-  J.-H. Lee, J.-H. Choi, The production of ultrapure water by
    membrane capacitive deionization (MCDI) technology, J. Membr.
    Sci., 409–410 (2012) 251–256. 
-  H. Li, L. Zou, Ion-exchange membrane capacitive deionization:
    a new strategy for brackish water desalination, Desalination,
    275 (2011) 62–66. 
-  Y.-J. Kim, J.-H. Choi, Improvement of desalination efficiency in
    capacitive deionization using a carbon electrode coated with an
    ion-exchange polymer, Water Res., 44 (2010) 990–996. 
-  P.M. Biesheuvel, R. Zhao, S. Porada, A. van der Wal, Theory
    of membrane capacitive deionization including the effect of
    the electrode pore space, J. Colloid Interface Sci., 360 (2011)
    239–248. 
-  C. Kim, P. Srimuk, J. Lee, S. Fleischmann, M. Aslan, V. Presser,
    Influence of pore structure and cell voltage of activated carbon
    cloth as a versatile electrode material for capacitive deionization,
    Carbon, 122 (2017) 329–335. 
-  J. Cao, Y. Wang, C. Chen, F. Yu, J. Ma, A Comparison of graphene
    hydrogels modified with single-walled/multi-walled carbon
    nanotubes as electrode materials for capacitive deionization,
    J. Colloid Interface Sci., 518 (2018) 69–75. 
-  Y.M. Volfkovich, D.A. Bograchev, A.M. Mikhalin, A.Yu. Rychagov,
    V.E. Sosenkin, V.V. Milyutin, D. Park, Electrodes Based on
    Carbon Nanomaterials: Structure, Properties and Application to
    Capacitive Deionization in Static Cells, Chapter 9, O. Fesenko,
    L. Fesenko, Eds., Nano-Optics, Nanophotonics, Nanomaterials,
    and Their Applications, Springer, 2018, pp. 127–139. 
-  J. Feng, Z. Yang, S. Hou, M. Li, R. Lv, F. Kang, Z-H. Huang,
    GO/auricularia - derived hierarchical porous carbon used for
    capacitive deionization with high performance, Colloids Surf.,
    A, 547 (2018) 134–140. 
-  M.S. Gaikwad, C. Balomajumder, Polymer coated capacitive
    deionization electrode for desalination: a mini review, Electrochem.
    Energy Technol., 2 (2016) 1–5. 
-  Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, L. Pan, Review on carbonbased
    composite materials for capacitive deionization, RSC
    Adv., 5 (2015) 15205–15225. 
-  D. Zhang, X. Wen, L. Shi, T. Yan, J. Zhang, Enhanced capacitive
    deionization of graphene/mesoporous carbon composites,
    Nanoscale, 4 (2012) 5440–5446. 
-  M.T.Z. Myint, J. Dutta, Fabrication of zinc oxide nanorods
    modified activated carbon cloth electrode for desalination
    of brackish water using capacitive deionization approach,
    Desalination, 305 (2012) 24–30. 
-  Y. Bian, P. Liang, X. Yang, Y. Jiang, C. Zhang, X. Huang, Using
    activated carbon fiber separators to enhance the desalination
    rate of membrane capacitive deionization, Desalination, 381
    (2016) 95–99. 
-  Yu.M. Volfkovich, A.A. Mikhalin, A.Y. Rychagov, Surface conductivity
    measurements for porous carbon electrodes, Russ. J.
    Electrochem., 49 (2013) 594–598. 
-  Yu.M. Volfkovich, D.A. Bograchev, A.Yu. Rychagov, V.E. Sosenkin,
    M.Yu. Chaika, Supercapacitors with carbon electrodes.
    Energy efficiency: modeling and experimental verification,
    J. Solid State Electrochem., 19 (2015) 1–9. 
-  N.P. Berezina, N.A. Kononenko, Yu.M. Volfkovich, Yu.
    G. Freidlin, L.G. Chernoskutova, Physico-chemical properties
    of aniono-cationo exchange membranes of mosaic structure, J.
    Soviet Electrochem., 29 (1989) 912–915. 
-  J. Mora-Gomez, M. Garcia-Gabaldon, M.C. Marti-Catalayud,
    S. Mestre, V. Perez-Herranz, Anion transport through ceramic
    electrodialysis membranes made with hydrated cerium dioxide,
    J. Am. Ceram. Soc., 100 (2017) 4180–4189. 
-  Y.S. Dzyazko, A.S. Rudenko, Y.M. Yukhin, A.V. Palchik,
    V.N. Belyakov, Modification of ceramic membranes with
    inorganic sorbents. Application to electrodialytic recovery of
    Cr(VI) anions from multicomponent solution, Desalination,
    342 (2014) 52–60. 
-  R. Pang, X. Li, J. Li, Z. Lu, X. Sun, L. Wang, Preparation and
    characterization of ZrO2/PES hybrid ultrafiltration membrane
    with uniform ZrO2 nanoparticles, Desalination, 332 (2014)
    60–66. 
-  Y.S. Dzyazko, L.M. Rozhdestvenskaya, Y.G. Zmievskii, A.I.
    Vilenskii, V.G. Myronchuk, L.V. Kornienko, S.L. Vasilyuk, N.N.
    Tsyba, Organic-inorganic materials containing nanoparticles
    of zirconium hydrophosphate for baromembrane separation,
    Nanoscale Res. Lett., 10 (2015) 1–11. 
-  R.J. Phillips, W.M. Deen, J.F. Brady, Hindered transport of
    spherical macromolecules in fibrous membranes and gels,
    AIChE J., 35 (1989) 1761–1769. 
-  A.I. Gopalan, K.-P. Lee, K.M. Manesha, P. Santhosh, Poly
    (vinylidene fluoride)–polydiphenylamine composite electrospun
    membrane as high-performance polymer electrolyte for lithium
    batteries, J. Membr. Sci., 318 (2008) 422–428. 
-  M.M. Kardash, Yu.M. Vol’fkovich, I.A. Tyurin, N.A. Kononenko,
    D.V. Oleinik, M.A. Chernyaeva, Effect of process parameters
    of manufacturing of composite fibrous membranes on their
    structure and ion selectivity, Petrol. Chem., 53 (2013) 482–488. 
-  M.M. Kardash, D.V. Terin, Search for a technological invariant
    and evolution of the structure – property relation for Polikon
    materials, Petrol. Chem., 56 (2016) 413–422. 
-  M.M. Kardash, N.B. Fedorchenko, O.V. Epancheva, Structural
    features of composite chemisorption fibre materials from
    polycondensation filling, Fibre Chem., 34 (2002) 466–469. 
-  http://www.kynol.de/pdf/ 
-  Yu.M. Volfkovich, V.S. Bagotzky, The method of standard
    porosimetry 2. Investigation of the formation of porous
    structures, J. Power Sources, 48 (1994) 339–348. 
-  Yu.M. Volfkovich, A.V. Sakars, A.A. Volinsky, Application of
    the standard porosimetry method for nanomaterials, Int. J.
    Nanotechnol., 2 (2005) 292–302. 
-  Yu.S. Dzyazko, L.N. Ponomaryova, Yu.M. Volfkovich,
    V.E. Sosenkin, V.N. Belyakov, Polymer ion-exchangers modified
    with zirconium hydrophosphate for removal of Cd2+ ions from
    diluted solutions, Sep. Sci. Technol., 48 (2013) 2140–2149. 
-  Yu.M. Volfkovich, A.N. Filippov, V.S. Bagotsky, Structural
    Properties of Porous Materials and Powders Used in Different
    Fields of Science and Technology, Springer, 2014. 
-  N.A. Kononenko, M.A. Fomenko, Yu.M. Volfkovich, Structure
    of perfluorinated membranes investigated by method of
    standard contact porosimetry, Adv. Colloid Interface Sci.,
    222 (2015) 425–435. 
-  J. Rouquerol, G. Baron, R. Denoyel, H. Giesche, J. Groen,
    P. Klobes, P. Levitz, A.V. Neimark, S. Rigby, R. Skudas, K. Sing,
    M. Thommes, K. Unger, Liquid intrusion and alternative
    methods for the characterization of macroporous materials
    (IUPAC Technical Report), Pure Appl. Chem., 84 (2011) 107–136. 
-  A.B. Yaroslavtsev, Ed., Membranes and Membrane Technologies,
    Nauchnii Mir, Moscow, 2013 [in Russian]. 
-  N.P. Gnusin, N.P. Berezina, O.A. Dyomina, N.A. Kononenko,
    Physicochemical principles of testing ion-exchange membranes,
    Russ. J. Electrochem., 32 (1996) 154–163. 
-  Yu.M. Volfkovich, D.A. Bograchev, A.A. Mikhailin, V.S. Bagotzky,
    Supercapacitor carbon electrodes with high capacitance,
    J. Solid State Electrochem., 18 (2014) 1351–1363. 
-  J. Kozeny, Uber die kapillare Leitung des Wassers im Boden,
    Aufstieg Versickerung und Anwendung auf die Bewasserung.
    Sitzungsber Akad. Wiss., Wien, 136 (1927) 271–306. 
-  J. Kang, T. Kim, H. Shin, J. Lee, J.-I. Ha, J. Yoon, Direct energy
    recovery system for membrane capacitive deionization,
  Desalination, 398 (2016) 144–150.