References

  1. R. Kaur, J.P. Kushwaha, N. Singh, Amoxicillin electro-catalytic oxidation using Ti/RuO2 anode: mechanism, oxidation products, and degradation pathway, Electrochim. Acta, 296 (2019) 856–866.
  2. O. Ganzenko, D. Huguenot, E.D. Van Hullebusch, G. Esposito, M.A. Oturan, Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches, Environ. Sci. Pollut. Res., 21 (2014) 8493–8524.
  3. F.O. Agunbiade, B. Moodley, Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu- Natal, South Africa, Environ. Monit. Assess., 186 (2014) 7273–7291.
  4. M. Llorca, M. Farré, E. Eljarrat, S. Díaz-Cruz, S. Rodríguez-Mozaz, D. Wunderlin, D. Barcelo, Review of emerging contaminants in aquatic biota from Latin America: 2002–2016, Environ. Toxicol. Chem., 36 (2017) 1716–1727.
  5. Y. Zhong, Z.-F. Chen, X. Dai, S-S. Liu, G. Zheng, X. Zhu, S. Liu, Y. Yin, G. Liu, Z. Cai, Investigation of the interaction between the fate of antibiotics in aquafarms and their level in the environment, J. Environ. Manage., 207 (2018) 219–229.
  6. C. Song, C. Zhang, L. Fan, L. Qiu, W. Wu, S. Meng, G. Hu, B. Kamira, J. Chen, Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China, Chemosphere, 161 (2016) 127–135.
  7. B. Petrie, R. Barden, B. Kasprzyk-Hordern, A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas, and recommendations for future monitoring, Water Res., 72 (2015) 3–27.
  8. M. Pan, L. Chu, Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China, Sci. Total Environ., 624 (2018) 145–152.
  9. A. Javid, A. Mesdaghinia, S. Nasseri, A.H. Mahvi, M. Alimohammadi, H. Gharibi, Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran, Iran, J. Environ. Health Sci. Eng., 14 (2016) 4.
  10. F. Silva, C. Sáez, M. Lanza, P. Cañizares, M. Rodrigo, The role of mediated oxidation on the electro-irradiated treatment of amoxicillin and ampicillin polluted wastewater, Catalysts, 9 (2019) 9.
  11. C. Carballeira, M. De Orte, I. Viana, T. DelValls, A. Carballeira, Assessing the toxicity of chemical compounds associated with land-based marine fish farms: the sea urchin embryo bioassay with Paracentrotus lividus and Arbacia lixula, Arch. Environ. Contam. Toxicol., 63 (2012) 249–261.
  12. L.B. Brito, L.F. Garcia, M.P. Caetano, G.S. Lobón, M.T. de Oliveira, R. de Oliveira, I.M.S. Torres, A. Yepez, B.G. Vaz, R. Luque, Electrochemical remediation of amoxicillin: detoxification and reduction of antimicrobial activity, Chem.-Biol. Interact., 291 (2018) 162–170.
  13. M.A.F. Locatelli, F.F. Sodré, W.F. Jardim, Determination of antibiotics in brazilian surface waters using liquid chromatography–electrospray tandem mass spectrometry, Arch. Environ. Contam. Toxicol., 60 (2011) 385–393.
  14. M. Taghi Ghaneian, A. Ebrahimi, J. Salimi, R. Khosravi, R.A. Fallahzadeh, M. Amrollahi, M. Taghavi, Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid from aqueous solutions using In2O3 nanoparticles, J. Mazandaran Univ. Med. Sci., 26 (2016) 159–170.
  15. A. Javid, S. Nasseri, A. Mesdaghinia, A. hossein Mahvi, M. Alimohammadi, R.M. Aghdam, N. Rastkari, Performance of photocatalytic oxidation of tetracycline in aqueous solution by TiO2 nanofibers, J. Environ. Health Sci. Eng., 11 (2013) 24.
  16. I. Sirés, E. Brillas, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review, Environ. Int., 40 (2012) 212–229.
  17. G. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari, A. Mahvi, Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution, Int. J. Environ. Sci. Technol., 12 (2015) 603–616.
  18. A. Nikoonahad, B. Djahed, S. Norzaee, H. Eslami, Z. Derakhshan, M. Miri, Y. Fakhri, E. Hoseinzadeh, S.M. Ghasemi, D. Balarak, An overview report on the application of heteropoly acids on supporting materials in the photocatalytic degradation of organic pollutants from aqueous solutions, Peer J., 6 (2018) e5501.
  19. F. Ozyonar, S. Aksoy, Removal of salicylic acid from aqueous solutions using various electrodes and different connection modes by electrocoagulation, Int. J. Electrochem. Sci., 11 (2016) 3680–3696.
  20. E. Bazrafshan, L. Mohammadi, A. Ansari Moghadam, A.H. Mahvi, Heavy metals removal from aqueous environments by electrocoagulation process– a systematic review, J. Environ. Health Sci. Eng., 13 (2015), Article number: 74.
  21. E. Bazrafshan, M.R. Alipour, A.H. Mahvi, Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes, Desal. Water Treat., 57 (2016) 9203–9215.
  22. A.H. Mahvi, S.J.A.-d. Ebrahimi, A. Mesdaghinia, H. Gharibi, M.H. Sowlat, Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation–electroflotation (ECEO–EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent, J. Hazard. Mater., 192 (2011) 1267–1274.
  23. E. Bazrafshan, A. Mahvi, S. Nasseri, M. Shaieghi, Performance evaluation of electrocoagulation process for diazinon removal from aqueous environments by using iron electrodes, J. Environ. Health Sci. Eng., 4 (2007) 127–132.
  24. C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal., B, 87 (2009) 105–145.
  25. E. Bazrafshan, K.A. Ownagh, A.H. Mahvi, Application of electrocoagulation process using iron and aluminum electrodes for fluoride removal from aqueous environment, J. Chem., 9 (2012) 2297–2308.
  26. A. Anglada, A. Urtiaga, I. Ortiz, Contributions of electrochemical oxidation to waste‐water treatment: fundamentals and review of applications, J. Chem. Technol. Biotechnol., 84 (2009) 1747–1755.
  27. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
  28. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow, a review, Environ. Sci. Pollut. Res., 21 (2014) 8336–8367.
  29. J. Nouri, A. Mahvi, E. Bazrafshan, Application of electrocoagulation process in removal of zinc and copper from aqueous solutions by aluminum electrodes, Int. J. Environ. Res., 4 (2010) 201–208.
  30. M.A. Oturan, J.-J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications, A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
  31. M. Zhou, Q. Tan, Q. Wang, Y. Jiao, N. Oturan, M.A. Oturan, Degradation of organics in reverse osmosis concentrate by an electro-Fenton process, J. Hazard. Mater., 215 (2012) 287–293.
  32. A. Özcan, Y. Şahin, A.S. Koparal, M.A. Oturan, A comparative study on the efficiency of electro-Fenton process in the removal of propham from water, Appl. Catal., B, 89 (2009) 620–626.
  33. A. Wang, Y.-Y. Li, A.L. Estrada, Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation, Appl. Catal., B, 102 (2011) 378–386.
  34. A.R. Khataee, M. Zarei, A.R. Khataee, Electrochemical treatment of dye solution by oxalate catalyzed photoelectro-Fenton process using a carbon nanotube‐PTFE cathode: optimization by central composite design, Clean-Soil Air Water, 39 (2011) 482–490.
  35. A. Dalvand, M. Khoobi, R. Nabizadeh, M.R. Ganjali, E. Gholibegloo, A.H. Mahvi, Reactive dye adsorption from aqueous solution on HPEI-modified Fe3O4 nanoparticle as a super adsorbent: characterization, modeling, and optimization, J. Polym. Environ., 26 (2018) 3470–3483.
  36. A.E. Greenberg, L.S. Clesceri, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 1015 (2005) 49–51.
  37. L. Szabó, T. Tóth, T. Engelhardt, G. Rácz, C. Mohácsi-Farkas, E. Takács, L. Wojnárovits, Change in hydrophilicity of penicillins during advanced oxidation by radiolytically generated OH compromises the elimination of selective pressure on bacterial strains, Sci. Total Environ., 551 (2016) 393–403.
  38. E.A. Serna-Galvis, K.E. Berrio-Perlaza, R.A. Torres-Palma, Electrochemical treatment of penicillin, cephalosporin, and fluoroquinolone antibiotics via active chlorine: evaluation of antimicrobial activity, toxicity, matrix, and their correlation with the degradation pathways, Environ. Sci. Pollut. Res., 24 (2017) 23771–23782.
  39. V.S. Antonin, S. Garcia-Segura, M.C. Santos, E. Brillas, Degradation of Evans Blue diazo dye by electrochemical processes based on Fenton’s reaction chemistry, J. Electroanal. Chem., 747 (2015) 1–11.
  40. A. Thiam, M. Zhou, E. Brillas, I. Sirés, Two-step mineralization of Tartrazine solutions: study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes, Appl. Catal., B, 150 (2014) 116–125.
  41. V. Orescanin, R. Kollar, K. Nad, I.L. Mikelic, S.F. Gustek, Treatment of winery wastewater by electrochemical methods and advanced oxidation processes, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 48 (2013) 1543–1547.
  42. A. Thiam, I. Sirés, J.A. Garrido, R.M. Rodríguez, E. Brillas, Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes, J. Hazard. Mater., 290 (2015) 34–42.
  43. F.C. Moreira, J. Soler, A. Fonseca, I. Saraiva, R.A. Boaventura, E. Brillas, V.J. Vilar, Electrochemical advanced oxidation processes for sanitary landfill leachate remediation: evaluation of operational variables, Appl. Catal., B, 182 (2016) 161–171.
  44. A. Sánchez-Carretero, C. Sáez, P. Cañizares, M. Rodrigo, Electrochemical production of perchlorates using conductive diamond electrolyses, Chem. Eng. J, 166 (2011) 710–714.
  45. A. Khataee, H. Marandizadeh, M. Zarei, S. Aber, B. Vahid, Y. Hanifehpour, S.W. Joo, Treatment of an Azo dye by citrate catalyzed photoelectro-Fenton process under visible light using carbon nanotube-polytetrafluoroethylene cathode, Curr. Nanosci., 9 (2013) 387–393.
  46. H.T. Madsen, E.G. Søgaard, J. Muff, Reduction in energy consumption of electrochemical pesticide degradation through combination with membrane filtration, Chem. Eng. J, 276 (2015) 358–364.
  47. L.M. Da Silva, I.C. Gonçalves, J.J. Teles, D.V. Franco, Application of oxide fine-mesh electrodes composed of Sb-SnO2 for the electrochemical oxidation of Cibacron Marine FG using an SPE filter-press reactor, Electrochim. Acta, 146 (2014) 714–732.
  48. A.K. Abdessalem, M.A. Oturan, N. Oturan, N. Bellakhal, M. Dachraoui, Treatment of an aqueous pesticides mixture solution by direct and indirect electrochemical advanced oxidation processes, Int. J. Environ. Anal. Chem., 90 (2010) 468–477.
  49. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O− in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  50. H. Pouretedal, N. Sadegh, Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1 (2014) 64–73.
  51. G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari, Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chem. Eng. J, 217 (2013) 119–128.
  52. A.M. de Freitas, C. Sirtori, P. Peralta-Zamora, Photoelectrocatalytic degradation of camphor on TiO2/RuO2 electrodes, Environ. Chem. Lett., 9 (2011) 97–102.
  53. A. Socha, E. Sochocka, R. Podsiadły, J. Sokołowska, Electrochemical and photoelectrochemical treatment of CI Acid Violet 1, Dyes Pigm., 73 (2007) 390–393.
  54. S. Cotillas, J. Llanos, O.G. Miranda, G.C. Díaz-Trujillo, P. Cañizares, M.A. Rodrigo, Coupling UV irradiation and electrocoagulation for reclamation of urban wastewater, Electrochim. Acta, 140 (2014) 396–403.
  55. A. Dalvand, M. Gholami, A. Joneidi, N.M. Mahmoodi, Dye removal, energy consumption and operating cost of electrocoagulation of textile wastewater as a clean process, Clean-Soil Air Water, 39 (2011) 665–672.
  56. M.T. Ghaneian, M. Tabatabaee, M.H. Ehrampoush, A. Jebali, S. Hekmatimoghaddam, H. Fallahzadeh, R.A. Fallahzadeh, Synthesis of Ag (I) and Cu (I) complexes with 4-amino-5-methyl-2h-1, 2, 4-triazole-3 (4h)-thione ligand as thiocarbohydrazide derivatives and their antimicrobial activity, Pharm. Chem. J., 49 (2015) 210–212.
  57. R.A. Fallahzadeh, A.H. Mahvi, M.N. Meybodi, M.T. Ghaneian, A. Dalvand, M.H. Salmani, H. Fallahzadeh, M.H. Ehrampoush, Application of photo-electro oxidation process for amoxicillin removal from aqueous solution: modeling and toxicity evaluation, Korean J. Chem. Eng., 36 (2019) 713–721.
  58. B. Padilla-Robles, A. Alonso, S. Martínez-Delgadillo, M. González-Brambila, U. Jaúregui-Haza, J. Ramírez-Muñoz, Electrochemical degradation of amoxicillin in aqueous media, Chem. Eng. Process. Process Intensif., 94 (2015) 93–98.
  59. X. Jin, X. Wang, Y. Wang, H. Ren, Oxidative degradation of amoxicillin in aqueous solution with contact glow discharge electrolysis, Ind. Eng. Chem. Res., 52 (2013) 9726–9730.
  60. B.M.B. Ensano, L. Borea, V. Naddeo, V. Belgiorno, M.D.G. de Luna, M. Balakrishnan, F.C. Ballesteros Jr., Applicability of the electrocoagulation process in treating real municipal wastewater containing pharmaceutical active compounds, J. Hazard. Mater., 361 (2019) 367–373.
  61. M. Panizza, A. Dirany, I. Sirés, M. Haidar, N. Oturan, M.A. Oturan, Complete mineralization of the antibiotic amoxicillin by electro-Fenton with a BDD anode, J. Appl. Electrochem., 44 (2014) 1327–1335.
  62. E. Bazrafshan, F.K. Mostafapour, M. Farzadkia, K. Ownagh, A.H. Mahvi, Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process, PLoS One, (2012), https://doi.org/10.1371/journal.pone.0040108.