References

  1. M.A.H. Bhuiyan, M.A. Islam, S.B. Dampare, L. Parvez, S.Suzuki, Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh, J. Hazard. Mater., 179 (2010) 1065–1077.
  2. Q.A. Malik, M.S. Khan, Effect on human health due to drinking water contaminated with heavy metals, J. Pollut. Eff. Control, 5 (2016) 1000179.
  3. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review, Ecotoxicol. Environ. Saf., 148 (2018) 702–712.
  4. E.D. Hwang, K.W. Lee, K.H. Choo, S.J. Choi, S.H. Kim, C.H. Yoon, C.H. Lee, Effect of precipitation and complexation on nanofiltration of strontium-containing nuclear wastewater, Desalination, 147 (2002) 289–294.
  5. J. Peterson, M. MacDonell, L. Haroun, F. Monette, Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas, U.S. Department of Energy, United States, 2007.
  6. A. Nilchi, M.R. Hadjmohammadi, S.R. Garmarodi, R. Saberi, Studies on the adsorption behavior of trace amounts of 90Sr2+, 140La3+, 60Co2+, Ni2+ and Zr4+ cations on synthesized inorganic ion exchangers, J. Hazard. Mater., 167 (2009) 531–535.
  7. L. Wu, G. Zhang, Q. Wang, L. Hou, P. Gu, Removal of strontium from liquid waste using a hydraulic pellet co-precipitation microfiltration (HPC-MF) process, Desalination, 349 (2014) 31–38.
  8. T. Sangvanich, V. Sukwarotwat, R.J. Wiacek, R.M. Grudzien, G.E. Fryxell, R.S. Addleman, C. Timchalk, W. Yantasee, Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica, J. Hazard. Mater., 182 (2010) 225–231.
  9. G. Gurboga, H. Tel, Preparation of TiO2–SiO2 mixed gel spheres for strontium adsorption, J. Hazard. Mater., 120 (2005) 135–142.
  10. E.I. Kurbatova, A.I. Ksenofontov, A.M. Dmitriyev, J.L. Regens, Irradiation of sorbents by ions of polymorphic metals for modeling 90 strontium sedimentation, Environ. Sci. Pollut. Res., 14 (2007) 251–255.
  11. A. Ahmadpour, M. Zabihi, M. Tahmasbi, T.R. Bastami, Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions, J. Hazard. Mater., 182 (2010) 552–556.
  12. A. Ghaemi, M. Torab Mostaedi, M. Ghannadi Maragheh, Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder, J. Hazard. Mater., 190 (2011) 916–921.
  13. M. Cabranes, A.G. Leyva, P.A. Babay, Removal of Cs+ from aqueous solutions by perlite, Environ. Sci. Pollut. Res., 25 (2018) 21982–21992.
  14. J.L. Parks, M. Edwards, Precipitative removal of As, Ba, B, Cr, Sr, and V using sodium carbonate, J. Environ. Eng., 132 (2006) 489–496.
  15. V. Pacary, Y. Barre, E. Plasari, Method for the prediction of nuclear waste solution decontamination by co-precipitation of strontium ions with barium sulphate using the experimental data obtained in non-radioactive environment, Chem. Eng. Res. Des., 88 (2010) 1142–1147.
  16. S. Tan, X. Chen, Y. Ye, J. Sun, L. Dai, Q. Ding, Hydrothermal removal of Sr2+ in aqueous solution via formation of Sr-substituted hydroxyapatite, J. Hazard. Mater., 179 (2010) 559–563.
  17. R.W. Warrant, J.G. Reynolds, M. Johnson, Removal of 90Sr and 241Am from concentrated Hanford chelate-bearing waste by precipitation with strontium nitrate and sodium permanganate, J. Radioanal. Nucl. Chem., 295 (2013) 1575–1579.
  18. A.J. Rabideau, J.V. Benschoten, A. Patel, K. Bandilla, Performance assessment of a zeolite treatment wall for removing Sr-90 from groundwater, J. Contam. Hydrol., 79 (2005) 1–24.
  19. B. Ma, S. Oh, W.S. Shin, S. Choi, Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM), Desalination, 276 (2011) 336–346.
  20. W. Guan, J. Pan, H. Ou, X. Wang, X. Zou, W. Hu, C. Li, X. Wu, Removal of strontium(II) ions by potassium tetratitanate whisker and sodium trititanate whisker from aqueous solution: equilibrium, kinetics and thermodynamics, Chem. Eng. J., 167 (2011) 215–222.
  21. R. Dabbagh, H. Ghafourian, A. Baghvand, G.R. Nabi, H. Riahi, M.A.A. Faghih, Bioaccumulation and biosorption of stable strontium and 90Sr by Oscillatoria homogenea cyanobacterium, J. Radioanal. Nucl. Chem., 272 (2007) 53–59.
  22. S.G. Mashkani, P.T.M. Ghazvini, Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: application of micro-PIXE for measurement of biosorption, Bioresour. Technol., 100 (2009) 1915–1921.
  23. N. Ngwenya, E.M.N. Chirwa, Single and binary component sorption of the fission products Sr2+, Cs+ and Co2+ from aqueous solutions onto sulphate reducing bacteria, Miner. Eng., 23 (2010) 463–470.
  24. L.H.V. Thanh, J.C. Liu, Flotation separation of strontium via phosphate precipitation, Water Sci. Technol., 75 (2017) 2520–2526.
  25. T. Vincent, C. Vincent, E. Guibal, Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents—a mini-review, Molecules, 20 (2015) 20582–20613.
  26. P.K. Sinha, R.V. Amalraj, V. Krishnasamy, Flocculation studies on freshly precipitated copper ferrocyanide for the removal of caesium from radioactive liquid waste, Waste Manage., 13 (1993) 341–350.
  27. S. Divakarana, D. Ponrajua, S. Varugheseb, T. Swaminathan, Parametric studies for strontium separation and volume reduction of a simulated nuclear waste solution, Sep. Sci. Technol., 53 (2018) 1732–1740.
  28. X. Zhang, P. Gu, Y. Liu, Decontamination of radioactive wastewater: state of the art and challenges forward, Chemosphere, 215 (2019) 543–553.
  29. S.V.S. Rao, B. Paul, K.B. Lal, S.V. Narasimhan, J. Ahmed, Effective removal of cesium and strontium from radioactive wastes using chemical treatment followed by ultra filtration, J. Radioanal. Nucl. Chem., 246 (2000) 413–418.
  30. S. Lin, T. Wang, R. Juang, Metal rejection by nanofiltration from diluted solutions in the presence of complexing agents, Sep. Sci. Technol., 39 (2004) 363–376.
  31. L.A. Richards, B.S. Richards, A.I. Schafer, Renewable energy powered membrane technology: salt and inorganic contaminant removal by nanofiltration/reverse osmosis, J. Membr. Sci., 369 (2011) 188–195.
  32. E. Kavitha, M.P. Rajesh, S. Prabhakar, A. Sowmya, M.A. Raqeeb, S. Sriram, P. Jain, Size enhanced ultrafiltration – a novel hybrid membrane process for the removal and recovery of heavy metal contaminants, Res. J. Pharm. Biol. Chem. Sci., 8 (2017) 191–200.
  33. C.A. Rodrigues, M.C.M. Laranjeira, V.T. De Favere, E. Stadler, Interaction of Cu(II) on N-(2-pyridylmethyl) and N-(4-pyridylmethyl) chitosan, Polymer, 39 (1998) 5121–5126.
  34. T. Becker, M. Schlaak, H. Strasdeit, Adsorption of nickel (II), zinc (II) and cadmium (II) by new chitosan derivatives, React. Funct. Polym., 44 (2000) 289–298.
  35. T. Asakawa, K. Inoue, T. Katsutoshi, T. Tanaka, Adsorption of silver on dithiocarbamate type of chemically modified chitosan, Kagaku Kogaku Ronbun., 26 (2000) 321–326, doi: 10.1252/ kakoronbunshu.26.321.
  36. Z. Yang, Y. Wang, Y. Tang, Synthesis and adsorption properties for metal ions of mesocyclic diamine‐grafted chitosan‐crown ether, J. Appl. Polym. Sci., 75 (2000) 1255–1260.
  37. A. Bernkop Schnurch, C. Paikl, C. Valenta, Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopeptidase N, Pharmacol. Res., 14 (1997) 917–922.
  38. B. Li, F. Zhou, K. Huang, Y. Wang, S. Mei, Y. Zhou, T. Jing, Environmentally friendly chitosan/PEI-grafted magnetic gelatin for the highly effective removal of heavy metals from drinking water, Sci. Rep., 7 (2017) 43082.
  39. F.G.L. Medeiros Borsagli, A.A.P. Mansur, P. Chagas, L.C.A. Oliveira, H.S. Mansur, O-carboxymethyl functionalization of chitosan: complexation and adsorption of Cd(II) and Cr(VI) as heavy metal pollutant ions, React. Funct. Polym., 97 (2015) 37–47.
  40. E. Kavitha, A. Sowmya, S. Prabhakar, P. Jain, R. Surya, M.P. Rajesh, Removal and recovery of heavy metals through size enhanced ultrafiltration using chitosan derivatives and optimization with response surface modeling, Int. J. Biol. Macromol., 132 (2019) 278–288.
  41. M.J. Anderson, P.J. Whitcomb, RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments, 2nd ed., CRC Press, A Productivity Press Book, Taylor & Francis Group, United States, 2016.
  42. M. Savasari, M. Emadi, M.A. Bahmanyar, P. Biparva, Optimization of Cd(II) removal from aqueous solution by ascorbic acid-stabilized zero valent iron nanoparticles using response surface methodology, J. Ind. Eng. Chem., 21 (2015) 1403–1409.
  43. A. Ahmadia, S. Heidarzadeh, A.R. Mokhtari, E. Darezereshki, H. Asadi Harouni, Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response surface methodology, J. Geochem. Explor., 147 (2014) 151–158.
  44. N. Maximous, G. Nakhla, W. Wan, K. Wong, Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration, J. Membr. Sci., 341 (2009) 67–75.
  45. S. Velu, L. Muruganandam, G. Arthanareeswaran, Preparation and performance studies on polyethersulfone ultrafiltration membranes modified with gelatin for treatment of tannery and distillery wastewater, Braz. J. Chem. Eng., 32 (2015) 179–189.
  46. C. Cojocaru, G. Zakrzewska-Trznadel, Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration, J. Membr. Sci., 298 (2007) 56–70.
  47. S. Chakraborty, J. Dasgupta, U. Farooq, J. Sikder, E. Drioli, S. Curcio, Experimental analysis, modeling and optimization of chromium(VI) removal from aqueous solutions by polymerenhanced ultrafiltration, J. Membr. Sci., 456 (2014) 139–154.
  48. J.L. Aguirre, E. Pongracz, P. Peramaki, R.L. Keiski, Micellarenhanced ultrafiltration for the removal of cadmium and zinc: use of response surface methodology to improve understanding of process performance and optimization, J. Hazard. Mater., 180 (2010) 524–534.
  49. C. Cojocaru, G. Zakrzewska Trznadel, A. Jaworska, Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. Part 1: optimization of complexation conditions, J. Hazard. Mater., 169 (2009) 599–609.
  50. A. Koehring, The Application of Polynomial Response Surface and Polynomial Chaos Expansion Meta models within an Augmented Reality Conceptual Design Environment, Dissertation, Iowa State University, Ames, Iowa, 2008.
  51. V.K. Mourya, N.N. Inamdar, A. Tiwari, Carboxymethyl chitosan and its applications, Adv. Mater. Lett., 1 (2010) 11–33.
  52. R.K. Farag, R.R. Mohamed, Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity, Molecules, 18 (2013) 190–203.
  53. L. Chen, X. Bian, X. Lu, Removal of strontium from simulated low-level radioactive wastewater by nanofiltration, Water Sci. Technol., 78 (2018) 1733–1740.