References

  1. C. Lim, Malaysia Expected to be 24th Largest Economy in the World by 2050, 2018. Available at: Bernama.com, http://bernama.com/en/news.php?id=1451092 [Accessed 4 Apr. 2018] .
  2. F. Dong, Y. Wang, B. Su, Y. Hua, Y. Zhang, The process of peak CO2 emissions in developed economies: a perspective of industrialization and urbanization, Resour. Conserv. Recycl., 141 (2018) 61–75.
  3. B.A. Zarcinas, C.F. Ishak, M.J. McLaughlin, G. Cozens, Heavy metals in soils and crops in Southeast Asia, Environ. Geochem. Health, 26 (2004) 343–357.
  4. S. Khalid, M. Shahid, N. Niazi, B. Murtaza, I. Bibi, C. Dumat, A comparison of technologies for remediation of heavy metal contaminated soils, J. Geochem. Explor., 182 (2017) 247–268.
  5. A. Dybowska, M. Farago, E. Valsami-Jones, I. Thornton, Remediation strategies for historical mining and smelting sites, Sci. Prog., 89 (2006) 71–138.
  6. I. Valeton, Bauxites, Vol. 1, Elsevier, Amsterdam, 2010.
  7. N.N. Gow, G.P. Lozej, Bauxite, Geosci. Can., 20 (1993) 9–16.
  8. U.S. Geological Survey, Mineral Commodity Summaries, 2019. Available at: https://www.usgs.gov/centers/nmic/mineralcommodity-summaries [Accessed 27 Aug. 2019].
  9. N.H. Abdullah, N. Mohamed, L.H. Sulaiman, T.A. Zakaria, D.A. Rahim, Potential health impacts of bauxite mining in Kuantan, Malaysian J. Med. Sci., 23 (2016) 1–8.
  10. M. Malaysia, Malaysian Minerals Yearbook 2010, Minerals and Geoscience Department, Malaysia, 2010.
  11. K. Khalid, Conflicts Over Pahang Royalty in Bauxite Business?, KINIBIZ, 2016. Available at: http://www.kinibiz.com/story/tigertalk/208753/conflicts-over-pahang-royalty-in-bauxitebusiness.html [Accessed 10 Dec. 2017].
  12. J. Connars, The Price we Pay for Lucrative Bauxite, Free Malaysia Today, 2015. Available at: http://www.freemalaysiatoday.com/category/opinion/2015/11/27/the-price-we-pay-for-lucrativebauxite/[Accessed 10 Dec. 2017].
  13. N.H. Hussain, Z. Hashim, J.H. Hashim, N. Ismail, J. Zakaria, Psychosocial and health impacts of bauxite mining among Felda Bukit Goh communities in Kuantan, Malaysia, Int. J. Public Health Clin. Sci., 3 (2016) 174–189.
  14. G. Schwenke, L. Ayre, D. Mulligan, L. Bell, Soil stripping and replacement for the rehabilitation of bauxite-mined land at Weipa. II. Soil organic matter dynamics in mine soil chronosequences, Soil Res., 38 (2000) 371.
  15. D.E. Salt, M. Blaylock, N.P. Kumar, V. Dushenkov, B.D. Ensley, I. Chet, I. Raskin, Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants, Biotechnology, 13 (1995) 468.
  16. S.D. Cunningham, J.R. Shann, D.E. Crowley, T.A. Anderson, 1997, Phytoremediation of Contaminated Water and Soil, In Phytoremediation of Soil and Water Contaminants, Am. Chem. Soc., Washington D.C., 1997, pp. 2–17.
  17. P.N. Kumar, V. Dushenkov, H. Motto, I. Raskin, Phytoextraction: the use of plants to remove heavy metals from soils, Environ. Sci. Technol., 29 (1995) 1232–1238.
  18. T. McIntyre, Phytoremediation of Heavy Metals from Soils, Springer, Berlin, Heidelberg, 2003, pp. 97–123.
  19. V. Dushenkov, P.N. Kumar, H. Motto, I. Raskin, Rhizofiltration: the use of plants to remove heavy metals from aqueous streams, Environ. Sci. Technol., 29(1995) 1239–1245.
  20. D.E. Salt, R.D. Smith, I. Raskin, Phytoremediation, Annu. Rev. Plant Biol., 49 (1998) 643–668.
  21. P.K. Saxena, S. KrishnaRaj, T. Dan, M.R. Perras, N.N. Vettakkorumakankav, Phytoremediation of Heavy Metal Contaminated and Polluted Soils, Springer, Berlin, Heidelberg, 1999, pp. 305–329.
  22. X. Wan, M. Lei, T. Chen, Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil, Sci. Total Environ., 563–564 (2016) 796–802.
  23. C. Chen, I. Chiou, Remediation of heavy metal-contaminated farm soil using turnover and attenuation method guided with a sustainable management framework, Environ. Eng. Sci., 25 (2008) 11–32.
  24. Y. Inoue, A. Katayama, Two-scale evaluation of remediation technologies for a contaminated site by applying economic input–output life cycle assessment: risk–cost, risk–energy consumption and risk–CO2 emission, J. Hazard. Mater., 192 (2011) 1234–1242.
  25. S.J. Day, G.K. Morse, J.N. Lester, The cost-effectiveness of contaminated land remediation strategies, Sci. Total Environ., 201 (1997) 125–136.
  26. J. Gardner, Rehabilitating mines to meet land use objectives: bauxite mining in the Jarrah forest of Western Australia, Unasylva, 52 (2001) 3–8.
  27. V.C. Pandey, K. Singh, J.S. Singh, A. Kumar, B. Singh, R.P. Singh, Jatropha curcas: a potential biofuel plant for sustainable environmental development, Renewable Sustainable Energy Rev., 16 (2012) 2870–2883.
  28. Q. Chaudhry, M. Blom-Zandstra, S.K. Gupta, E. Joner, Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment (15 pp), Environ. Sci. Pollut. Res., 12 (2005) 34–48.
  29. M.O. Mendez, R.M. Maier, Phytoremediation of mine tailings in temperate and arid environments, Rev. Environ. Sci. Biotechnol., 7 (2008) 47–59.
  30. B.V. Tangahu, S.R.S. Abdullah, H. Basri, M. Idris, N. Anuar, M. Mukhlisin, Phytotoxicity of wastewater containing lead (Pb) effects Scirpus grossus, Int. J. Phytorem., 15 (2013) 814–826.
  31. C. Garbisu, J.H. Allica, O. Barrutia, I. Alkorta, J.M. Becerril, Phytoremediation: a technology using green plants to remove contaminants from polluted areas, Rev. Environ. Health, 17 (2002) 173–188.
  32. M. Ghosh, S.P. Singh, A review on phytoremediation of heavy metals and utilization of its by-products, Asian J. Energy Environ., 6 (2005) 18.
  33. W.H. Ernst, Phytoextraction of mine wastes–options and impossibilities, Chem. Erde., 65 (2005) 29–42.
  34. T. Alshaal, E. Domokos-Szabolcsy, L. Márton, M. Czakó, J. Kátai, P. Balogh, N. Elhawat, H. El-Ramady, M. Fári, Phytoremediation of bauxite-derived red mud by giant reed, Environ. Chem. Lett., 11 (2013) 295–302.
  35. N.I. Ismail, S.R. Sheikh Abdullah, M. Idris, H. Abu Hasan, M.I.E. Halmi, N. Hussin A.L. Sbani, O. Hamed Jehawi, S.N.A. Sanusi, M.H. Hashim, Accumulation of Fe-Al by Scirpus grossus grown in synthetic bauxite mining wastewater and identification of resistant rhizobacteria, Environ. Eng. Sci., 34 (2017) 367–375.
  36. P.J. Favas, J. Pratas, M. Varun, R. D’Souza, M.S. Paul, Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora, Environ. Risk Assess. Soil Contam., 3 (2014) 485–516.
  37. J. Korzeniowska, E. Stanislawska-Glubiak, Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals, Environ. Sci. Pollut. Res., 22 (2015) 11648–11657.
  38. K.S. Rajoo, A. Ismail, D.S. Karam, F.M. Muharam, Phytoremediation studies on soils contaminated with heavy metals in Malaysia: a review article, American-Eurasian, J. Agric. Environ. Sci., 16 (2016) 1504–1514.
  39. N. Mathiyazhagan, D. Natarajan, Phytoremediation Efficiency of Edible and Economical Crops on Waste Dumps of Bauxite Mines, Salem District, Tamil Nadu, India, Springer, Berlin, Heidelberg, 2013, pp. 493–508.
  40. R. Courtney, G. Mullen, T. Harrington, An evaluation of revegetation success on bauxite residue, Restor. Ecol., 17 (2009) 350–358.
  41. S. Xue, F. Zhu, X. Kong, C. Wu, L. Huang, N. Huang, W. Hartle, A review of the characterization and revegetation of bauxite residues (Red mud), Environ. Sci. Pollut. Res., 23 (2016) 1120–1132.
  42. M.A. Norman, J.M. Koch, C.D. Grant, T.K. Morald, S.C. Ward, Vegetation succession after bauxite mining in Western Australia, Restor. Ecol., 14 (2006) 278–288.
  43. J.M. Koch, Restoring a jarrah forest understorey vegetation after bauxite mining in Western Australia, Restor. Ecol., 15 (2007) S26–S39.
  44. S. Jamil, P.C. Abhilash, N. Singh, P.N. Sharma, Jatropha curcas: a potential crop for phytoremediation of coal fly ash, J. Hazard. Mater., 172 (2009) 269–275.
  45. S.K. Yadav, A.A. Juwarkar, G.P. Kumar, P.R. Thawale, S.K. Singh, T. Chakrabarti, Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer, Bioresour. Technol., 100 (2009) 4616–4622.
  46. J. Marrugo-Negrete, J. Durango-Hernández, J. Pinedo-Hernández, J. Olivero-Verbel, S. Díez, Phytoremediation of mercury-contaminated soils by Jatropha curcas, Chemosphere, 127 (2015) 58–63.
  47. Jamaica Bauxite Institute, (n.d.), Bauxite Land Reclamation & Rehabilitation, Available at: http://www.jbi.org.jm/pages/reclamation_rehabilitation [Accessed 26 Aug. 2019].
  48. Y. Drakapoulus, The Evolution of Bauxite Mining in Jamaica – Modern Challenges for a Mature Industry, 36th International ICSOBA Conference, The International Committee for Study of Bauxite, Alumina & Aluminium, 2018. Available at: https://icsoba.org/node/230 [Accessed 5 Sep. 2019].
  49. L. Gao, Z. Miao, Z. Bai, X. Zhou, J. Zhao, Y. Zhu, A case study of ecological restoration at the Xiaoyi Bauxite Mine, Shanxi Province, China, Ecol. Eng., 11 (1998) 221–229.
  50. P.W. Hinds, Restoration following bauxite mining in Western Australia, Restor. Reclam. Rev., 4 (1999) 6.