References

  1. C. Wang, W. Li, M. Guo, J. Ji, Ecological risk assessment on heavy metals in soils: use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy, Sci. Rep., 7 (2017) 40709.
  2. M. Li, H. Gou, I. Al-Ogaidi, N. Wu, Nanostructured sensors for detection of heavy metals: a review, ACS Sustainable Chem. Eng., 1 (2013) 713–723.
  3. G. Aragay, J. Pons, A. Merkoci, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection, Chem. Rev., 111 (2011) 3433–3458.
  4. Y. Yu, J.G. Shapter, R. Popelka-Filcoff, Copper removal using bio-inspired polydopamine coated natural zeolites, J. Hazard. Mater., 273 (2014) 174–182.
  5. C.V. Gherasim, J. Křivčík, P. Mikulášek, Investigation of batch electrodialysis process for removal of lead ions from aqueous solutions, Chem. Eng. J., 256 (2014) 324–334.
  6. T.A. Kurniawan, G.Y.S. Chan, W.H. Lo, S. Babel, Physicochemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118 (2006) 83–98.
  7. T. Zhou, T.T. Lim, S.S. Chin, A.G. Fane, Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: feasibility test of advanced oxidation processes with/without pretreatment, Chem. Eng. J., 166 (2011) 932–939.
  8. C.K. Liu, X.B. Lei, X.Y. Liang, J.Z. Jia, L. Wang, Visible sequestration of Cu2+ ions using amino-functionalized cotton fiber, RSC Adv., 7 (2017) 9744–9753.
  9. S.J. You, J.D. Lu, C.Y. Tang, X.H. Wang, Rejection of heavy metals in acidic wastewater by a novel thin-film inorganic forward osmosis membrane, Chem. Eng. J., 320 (2017) 532–538.
  10. C.K. Liu, X.B. Lei, L. Wang, J.Z. Jia, X.Y. Liang, X.Z. Zhao, H. Zhu, Investigation on the removal performances of heavy metal ions with the layer-by-layer assembled forward osmosis membranes, Chem. Eng. J., 327 (2017) 60–70.
  11. Y. Cui, Q. Ge, X.Y. Liu, T.S. Chung, Novel forward osmosis process to effectively remove heavy metal ions, J. Membr. Sci., 467 (2014) 188–194.
  12. P. Zhao, B.Y. Gao, Q.Y. Yue, S.C. Liu, H.K. Shon, The performance of forward osmosis in treating high-salinity wastewater containing heavy metal Ni2+, Chem. Eng. J., 288 (2016) 569–576.
  13. R.L. McGinnis, M. Elimelech, Energy requirements of ammoniacarbon dioxide forward osmosis desalination, Desalination, 207 (2007) 370–382.
  14. B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents, J. Membr. Sci., 348 (2010) 337–345.
  15. A. Achilli, T.Y. Cath, E.A. Marchand, A.E. Childress, The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes, Desalination, 239 (2009) 10–21.
  16. C.R. Martinetti, A.E. Childress, T.Y. Cath, High recovery of concentrated RO brines using forward osmosis and membrane distillation, J. Membr. Sci., 331 (2009) 31–39.
  17. D. Rana, T. Matsuura, Surface modifications for antifouling membranes, Chem. Rev., 110 (2010) 2448–2471.
  18. X.Z. Zhao, J. Li, C.K. Liu, Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer, Desalination, 408 (2017) 102–109.
  19. X.Z. Zhao, C.K. Liu, Efficient removal of heavy metal ions based on the optimized dissolution-diffusion-flow forward osmosis process, Chem. Eng. J., 334 (2018) 1128–1134.
  20. N. Ma, J. Wei, R. Liao, C.Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis, J. Membr. Sci., 405–406 (2012) 149–157.
  21. K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J.B. Heymann, A. Engel, Y. Fujiyoshi, Structural determinants of water permeation through aquaporin-1, Nature, 407 (2000) 599–605.
  22. A. Zirehpoura, A. Rahimpoura, M. Ulbricht, Nano-sized metal-organic framework to improve the structural properties and desalination performance of thin-film composite forward osmosis membrane, J. Membr. Sci., 531 (2017) 59–67.
  23. D.C. Ma, S.B. Peh, G. Han, S.B. Chen, Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metalorganic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection, ACS Appl. Mater. Interfaces, 9 (2017) 7523–7534.
  24. W. Ding, J. Cai, Z. Yu, Q. Wang, Z. Xu, Z. Wang, C. Gao, Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support, J. Mater. Chem. A, 3 (2015) 20118–20126.
  25. L. Shen, J. Zuo, Y. Wang, Tris(2-aminoethyl)amine in-situ modified thin-film composite membranes for forward osmosis applications, J. Membr. Sci., 537 (2017) 186–201.
  26. W.P. Zhu, J. Gao, S.P. Sun, S. Zhang, T.S. Chung, Poly(amidoamine) dendrimer (PAMAM) grafted on thin-film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal, J. Membr. Sci., 487 (2015) 117–126.
  27. A.W. Bosman, H.M. Janssen, E.W. Meijer, About dendrimers: structure, physical properties, and applications, Chem. Rev., 99 (1999) 1665–1688.
  28. T.S. Chung, M.L. Chng, K.P. Pramoda, Y. Xiao, PAMAM dendrimer-induced cross-linking modification of polyimide membranes, Langmuir, 20 (2004) 2966–2969.
  29. G.L. Jadav, P.S. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, J. Membr. Sci., 328 (2009) 257–267.
  30. X.Z. Zhao, J. Li, C.K. Liu, A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance, Desalination, 413 (2017) 176–183.
  31. J. Yin, Y. Yang, Z. Hu, B. Deng, Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling, J. Membr. Sci., 441 (2013) 73–82.
  32. Y.Q. Wang, X.Y. Li, C.L. Cheng, Y.B. He, J.F. Pan, T.W. Xu, Second interfacial polymerization on polyamide surface using aliphatic diamine with improved performance of TFC FO membranes, J. Membr. Sci., 498 (2016) 30–38.
  33. S.H. Park, Y.S. Ko, S.J. Park, J.S. Lee, J. Cho, K.Y. Baek, I.T. Kim, K. Woo, J.H. Lee, Immobilization of silver nanoparticle-decorated silica particles on polyamide thin-film composite membranes for antibacterial properties, J. Membr. Sci., 499 (2016) 80–91.
  34. X. Kong, Z.L. Qiu, C.E. Lin, Y.Z. Song, B.K. Zhu, L.P. Zhu, X.Z. Wei, High permselectivity hyperbranched polyester/ polyamide ultrathin films with nanoscale heterogeneity, J. Mater. Chem. A, 5 (2017) 7876–7884.
  35. Y. Xiao, L. Shao, T.S. Chung, D.A. Schiraldi, Effects of thermal treatments, and dendrimers chemical structures on the properties of highly surface cross-linked polyimide films, Ind. Eng. Chem. Res., 44 (2005) 3059–3067.
  36. L. Shen, X. Zhang, J. Zuo, Y. Wang, Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment, J. Membr. Sci., 534 (2017) 46–58.
  37. C.K. Liu, R.B. Bai, Q.S. Ly, Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms, Water Res., 42 (2008) 1511–522.
  38. M.J. Ariza, J. Benavente, E. Rodriguez-Castellon, L. Palacio, Effect of hydration of polyamide membranes on the surface electrokinetic parameters: surface characterization by x-ray photoelectronic spectroscopy and atomic force microscopy, J. Colloid Interface Sci., 247 (2002) 149–158.
  39. M. Li, Z.W. Lv, J.F. Zheng, J.H. Hu, C. Jiang, M. Ueda, X. Zhang, L.J. Wang, Positively charged nanofiltration membrane with dendritic surface for toxic element removal, ACS Sustainable Chem. Eng., 5 (2017) 784–792.