References

  1. T. Rajaseenivasan, T. Elango, K. Kalidasa Murugavel, Comparative study of double basin and single basin solar stills, Desalination, 309 (2013) 27–31.
  2. M.M. Morad, H.A.M. El-Maghawry, K.I. Wasfy, Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover, Desalination, 373 (2015) 1–9.
  3. Q. Wang, S. Liang, Z. Zhu, G. Wu, Y. Su, H. Zheng, Performance of seawater-filling type planting system based on solar distillation process: numerical and experimental investigation, Appl. Energy, 250 (2019) 1225–1234.
  4. H.N. Panchal, Enhancement of distillate output of double basin solar still with vacuum tubes, J. King Saud Univ. Eng. Sci., 27 (2015) 170–175.
  5. R.A. Kumar, G. Esakkimuthu, K.K. Murugavel, Performance enhancement of a single basin single slope solar still using agitation effect and external condenser, Desalination, 399 (2016) 198–202.
  6. A. Somwanshi, A.K. Tiwari, “Performance enhancement of a single basin solar still with flow of water from an air cooler on the cover”, Desalination, 352 (2014) 92–102.
  7. A.A.A. Attia, Thermal analysis for system uses solar energy as a pressure source for reverse osmosis (RO) water desalination, Sol. Energy, 86 (2012) 2486–2493.
  8. A.F. Mashaly, A.A. Alazba, A.M. Al-Awaadh, Assessing the performance of solar desalination system to approach near- ZLD under hyper-arid environment, Desal. Water Treat., 57 (2016) 12019–12036.
  9. A. Johnson, L. Mu, Y.H. Park, D.J. Valles-Rosales, H. Wang, P. Xu, K. Kota, S. Kuravi, A thermal model for predicting the performance of a solar still with fresnel lens, Water, 11 (2019) 1860.
  10. V.K. Dwivedi, G.N. Tiwari, Experimental validation of thermal model of a double slope active solar still under natural circulation mode, Desalination, 250 (2010) 49–55.
  11. R. Kalbasi, A.A. Alemrajabi, M. Afrand, Thermal modeling, and analysis of single and double effect solar stills: an experimental validation, Appl. Therm. Eng., 129 (2018) 1455–1465.
  12. M. Castillo-Téllez, I. Pilatowsky-Figueroa, Á. Sánchez-Juárez, J.L. Fernández-Zayas, Experimental study on the air velocity effect on the efficiency and freshwater production in a forced convective double slope solar still, Appl. Therm. Eng., 75 (2015) 1192–1200.
  13. J.A. Alanís Navarro, M. CastilloTéllez, M.A. Rivera Martínez, G. Pedroza Silvar, F.C. Martínez Tejeda, Computational thermal analysis of a double slope solar still using Energy2D, Desal. Water Treat., 151 (2019) 26–33.
  14. Werlinger, Camilo, Krisler Alveal, Héctor Romo, Biología marina y oceanografía: conceptos y procesos. Consejo Nacional del Libro y la Lectura, 2004.
  15. R.V. Dunkle, Solar Water Distillation: The Roof Type Still and a Multiple Effect Diffusion Still, In Proc. International Heat Transfer Conference, University of Colorado, USA, 1961, vol. 5, pp. 895.
  16. M.A.S. Malik, V.V. Tran, A simplified mathematical model for predicting the nocturnal output of a solar still, Sol. Energy, 14 (1973) 371–385.
  17. H. Al-Hinai, M.S. Al-Nassri, B.A. Jubran, Effect of climatic, design and operational parameters on the yield of a simple solar still, Energy Convers. Manage., 43 (2002) 1639–1650.
  18. M.N. Bahadori, Passive and Hybrid Convective Cooling Systems, International Passive and Hybrid Cooling Conference, American Section of the International Solar Energy Society, Miami Beach, Florida, Nov. 1981, pp. 715–727.
  19. C. Beck, K. Crowther, H. Kessler, Radiative Cooling: Resource and Applications, Los Angeles, CA, 1981.
  20. J.R. Welty, C.E. Wicks, R.E. Wilson, G.L. Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer, 5th ed., Hamilton Printing, United States of America, 2008.
  21. I.N. Bronshtein, K.A. Semendyayev, G. Musiol, H. Muehlig, Handbook of Mathematics, 5th ed., Springer-Verlag, New York, 2015.
  22. ANSYS, Engineering Simulation & 3D Design Software | ANSYS, 2019. Available at: https://www.ansys.com/ [Accessed: 03-Jun-2019].
  23. E. Oñate, S. Idelsohn, O.C. Zienkiewicz, R.L. Taylor, A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int. J. Numer. Methods Eng., 39 (1996) 3839–3866.
  24. F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Vol. 113. Berlin, Germany, Springer, 2016.
  25. M. Ahsan, Numerical analysis of friction factor for a fully developed turbulent flow using k–ε turbulence model with enhanced wall treatment, Beni-Suef Univ. J. Basic Appl. Sci., 3 (2014) 269–277.
  26. J.J. Hermosillo, D. Gudiño, Notas Sobre el Curso de Energía Solar, Tlaquepaque, Jalisco, ITESO, 1995, pp. 158.
  27. S.H. Soliman, Effect of wind on solar distillation, Sol. Energy, 13 (1972) 403–415.
  28. R. Kalbasi, M.N. Esfahani, Multi-effect passive desalination system, an experimental approach, World Appl. Sci. J., 10 (2010) 1264–1271.
  29. M.N.I. Sarkar, A.I. Sifat, S.M.S. Reza, M.S. Sadique, A review of optimum parameter values of a passive solar still and a design for southern Bangladesh, Renewables: Wind, Water, Solar, 4 (2017) 1–13.
  30. A.F. Muftah, M.A. Alghoul, A. Fudholi, M.M. Abdul-Majeed, K. Sopian, Factors affecting basin type solar still productivity: a detailed review, Renewable Sustainable Energy Rev., 32 (2014) 430–447.