References

  1. H.C. Flemming, G. Schaule, T. Griebe, J. Schmitt, A. Tamachkiarowa, Biofouling – the Achilles heel of membrane processes, Desalination, 113 (1997) 215–225.
  2. J.S. Baker, L.Y. Dudley, Biofouling in membrane systems – a review, Desalination, 118 (1998) 81–90.
  3. T. Nguyen, F.A. Roddick, L. Fan, Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures, Membranes (Basel), 2 (2012) 804–840.
  4. H. Winters, T.H. Chong, A.G. Fane, W. Krantz, M. Rzechowicz, N. Saeidi, The involvement of lectins and lectin-like humic substances in biofilm formation – is TEP important?, Desalination, 399 (2016) 61–68.
  5. T. Berman, M. Holenberg, Don’t fall foul of biofilm through high TEP levels, Filtr. Sep., 42 (2005) 30–32.
  6. L.O. Villacorte, M.D. Kennedy, G.L. Amy, J.C. Schippers, Measuring transparent exopolymer particles (TEP) as indicator of the (bio)fouling potential of RO feed water, Desal. Water Treat., 5 (2009) 207–212.
  7. T. Berman, Transparent exopolymer particles as critical agents in aquatic biofilm formation: implications for desalination and water treatment, Desal. Water Treat., 51 (2013) 1014–1020.
  8. E. Bar-Zeev, U. Passow, C.S. Romero-Vergas, M. Elimelech, Transparent exopolymer particles (TEP): from aquatic environments and engineered systems to membrane biofouling, Environ. Sci. Technol., 49 (2015) 691–707.
  9. A.H.A. Dehwah, S. Al-Mashharawi, N. Kammourie, T.M. Missimer, Impact of well intake systems on bacterial, algae and organic carbon reduction in SWRO desalination systems, SAWACO, Jeddah, Saudi Arabia, Desal. Water Treat., 55 (2015) 2594–2600.
  10. A.H.A. Dehwah, S. Li, S. Al-Mashhaarwi, H. Winters, T.M. Missimer, Changes in feedwater organic matter concentrations based on intake type and pretreatment processes at SWRO facilities, Red Sea, Saudi Arabia, Desalination, 360 (2015) 19–27.
  11. A.H.A. Dehwah, S. Li, S. Al-Mashharawi, F.L. Mallon, Z. Batang, T.M. Missimer, Effects of Intake Depth on Raw Seawater Quality in the Red Sea, T.M. Missimer, B. Jones, R.G. Maliva, Eds., Intakes and Outfalls for Seawater Reverse Osmosis Desalination Facilities: Innovations and Environmental Impacts, Springer, Berlin, 2015, pp. 105–124.
  12. A.H.A. Dehwah, T.M. Missimer, Subsurface intake systems: green choice for improving feed Seawater quality at SWRO desalination plants, Jeddah, Saudi Arabia, Water Res., 88 (2016) 216–224.
  13. R.M. Rachman, S. Li, T.M. Missimer, SWRO feed water quality improvement using subsurface intakes in Oman, Spain, Turks and Caicos Islands, and Saudi Arabia, Desalination, 351 (2014) 88–100.
  14. R.M. Rachman, A.H.A Dehwah, S. Li, H. Winters, S. Al- Mashharawi, T.M. Missimer, Effects of Well Intake Systems on Removal of Algae, Bacteria, and Natural Organic Matter, T.M. Missimer, B. Jones, R.G. Maliva, Eds., Intakes and Outfalls for Seawater Reverse Osmosis Desalination Facilities: Innovations and Environmental Impacts, Springer, Berlin, 2015, pp. 163–193.
  15. A.H. Alshahri, A.H.A. Dehwah, T. Leiknes, T.M. Missimer, Organic carbon movement through two SWRO facilities from source water to pretreatment to product with relevance to biofouling, Desalination, 407 (2017) 52–60.
  16. A.H.A. Dehwah, S. Al-Mashharawi, K.C. Ng, T.M. Missimer, Aquifer treatment of seawater to remove natural organic matter before desalination, Ground Water, 55 (2016) 316–326.
  17. A.H.A. Dehwah, T.M. Missimer, Seabed gallery intakes: investigation of the water pretreatment effectiveness of the active layer using a long-term column experiment, Water Res., 121 (2017) 95–108.
  18. A.H.A. Dehwah, T.M. Missimer, Regrowth of Bacteria and TEP Production in Cartridge Filters: Are Cartridge Filter Necessary in Some SWRO Plants?, In: Proceedings, American Membrane Technology Association/American Water Works Association, 2015 Membrane Technology Conference and Exposition, Orlando, FL, 2015.
  19. F. Azam, F. Malfatti, Microbial structuring of marine ecosystems, Nat. Rev. Microbiol., 5 (2007) 782–791.
  20. A.L. Alldredge, K.M. Croker, Why do sinking mucilage aggregates accumulate in the water column?, Sci. Total Environ., 165 (1995) 15–22.
  21. U. Passow, Transparent exopolymer particles (TEP) in aquatic environments, Prog. Oceanogr., 55 (2002) 287–333.
  22. U. Passow, R.F. Shipe, A. Muarry, D.K. Pak, M.A. Brzezinski, A.L. Alldredge, The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter, Cont. Shelf Res., 21 (2001) 327–346.
  23. O. Wurl, L. Miller, S. Vagle, Production and fate of transparent exopolymer particles in the ocean, J. Geophys. Res., 116 (2001) 1–16.
  24. P. Verdugo, A.L. Alldredge, F. Azam, D.L. Kirchman, U. Passow, P.H. Santschi, The oceanic gel phase: a bridge in the DOM-POM continuum, Mar. Chem., 92 (2004) 67–85.
  25. M. Bižić-Ionescu, D. Ionescu, H.P. Grossart, Organic particles: heterogeneous hubs for microbial interactions in aquatic ecosystems, Front. Microbiol., 9 (2018) 2569.
  26. W.-C. Chin, M.V. Orellana, P. Werdugo, Spontaneous assembly of marine dissolved organic matter in polymer gels, Nature, 391 (1998) 568–572.
  27. K.E. Stoderegger, G.J. Herndl, Production of exopolymer particles of marine bacterioplankton under contrasting turbulence conditions, Mar. Ecol. Prog. Ser., 189 (1999) 9–16.
  28. T. Berman, Y. Viner-Mozzini, Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret, Aquat. Microb. Ecol., 24 (2001) 255–264.
  29. U. Passow, A.L. Alldredge, B.F. Logan, The role of particulate carbohydrates in the flocculation of diatom blooms, Deep Sea Res. Part I, 41 (1994) 335–357.
  30. J. Zhou, K. Mopper, U. Passow, The role of surface-active carbohydrates in the formation of transparent exopolymer particulates by bubble adsorption of seawater, Limnol. Oceanogr., 43 (1998) 1860–1871.
  31. X. Mari, F. Rassoulzadegan, C.P.D. Brussaard, Role of TEP in the microbial food web structure. II. Influence of the ciliate community structure, Mar. Ecol. Prog. Ser., 279 (2004) 23–32.
  32. F. Azam, R.A. Long, Sea snow microcosms, Nature, 414 (1995) 495–497.
  33. A. Engel, S. Thoms, U. Rieesell, E. Rochelle-Newall, I. Zondervan, Polysaccharide aggregation as a potential sink of marine dissolved organic carbon, Nature, 428 (2004) 929–932.
  34. K. Azetsu-Scott, U. Passow, Ascending marine particles: significance of transparent exopolymer particles (TEP) in the upper ocean, Limnol. Oceanogr., 49 (2004) 741–748.
  35. O.L. Wurl, M. Holmes, The gelatinous nature of the sea-surface microlayer, Mar. Chem., 100 (2008) 89–97.
  36. O. Wurl, L. Miller, R. Röttgers, S. Vagle, The distribution and fate of surface-active substances in the sea-surface microlayer and water column, Mar. Chem., 115 (2009) 1–9.
  37. M.K. Jennings, U. Passow, A.S. Wozinak, D.A. Hansell, Distribution of transparent exopolymer particles (TEO) across an organic carbon gradient in the western North Atlantic Ocean, Mar. Chem., 190 (2017) 1–12.
  38. A. Engel, Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes, Deep Sea Res. Part I, 51 (2004) 83–92.
  39. M. Simon, H.P. Grossart, B. Schweitzer, H. Ploug, Microbial ecology of organic aggregates in aquatic ecosystems, Aquat. Microb. Ecol., 28 (2002) 175–211.
  40. E. Ortega-Retuerta, I. Reche, E. Pulido-Villena, Agustí S, Duarte CM, Uncoupled distributions of transparent exopolymer particles (TEP) and dissolved carbohydrates in the Southern Ocean, Mar. Chem., 115 (2009) 59–65.
  41. E. Ortega-Retuerta, C.M. Duarte, I. Reche, Significance of bacterial activity for the distribution and dynamics of transparent exopolymer particles in the Mediterranean Sea, Microb. Ecol., 59 (2010) 808–818.
  42. E. Bar-Zeev, T. Berman, E. Rahav, G. Dishon, B. Herut, N. Kress, I. Berman-Frank, Transparent exopolymer particle (TEP) dynamics in the eastern Mediterranean Sea, Mar. Ecol. Prog. Ser., 431 (2011) 107–118.
  43. E. Ortega-Retuerta, M.M. Sala, E. Borrull, M. Mestre, F.L. Aparicio, R. Gallisai, C. Antequera, C. Marrasé, F. Peters, R. Simó, J.M. Gasol, Horizontal and vertical distributions of transparent exopolymer particles (TEP) in the NW Mediterranean Sea are linked to chlorophyll A and O2 variability, Front. Microbiol.,7 (2017) 2159.
  44. E.I. Bar-Zeev, I. Berman-Frank, B. Liberman, E. Rahav, U. Passow, T. Berman, Transparent exopolymer particles: potential agents for organic fouling and biofilm formation in desalination and water treatment plants, Desal. Water Treat., 3 (2009) 136–142.
  45. E.I. Bar-Zeev, I. Berman-Frank, N. Stambler, E.V. Domínguez, T. Zohary, E. Capuzzo, E. Meeder, D.J. Sugget, D. Iluz, G. Dishon, T. Berman, Transparent exopolymer particles (TEP) link phytoplankton and bacterial production in the Gulf of Aqaba, Aquat. Microb. Ecol., 56 (2009) 217–226.
  46. R. Van der Merwe, F. Hammes, S. Lattemann, G. Amy, Flow cytometric assessment of microbial abundance in the nearfield area of seawater reverse osmosis concentrate discharge, Desalination, 343 (2014) 208–216.
  47. J. Vives-Rego, P. Lebaron, G. Nebe-von Caron, Current and future applications of flow cytometry in aquatic microbiology, FEMS Microbiol. Rev., 24 (2000) 429–448.
  48. R. Tomisalv, T. Šilovic, D. Šantíc, D. Fuks, M. Micić, Prelideminary flow cytometric analysis of phototrophic picoand nanoplankton communities in the Northern Adriatic, Fresenius Environ. Bull., 18 (2009) 715–724.
  49. S.A. Huber, A. Balz, M. Abert, W. Pronk, Characterization of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen deection (LC-OCD-OND), Water Res., 45 (2011) 879–885.
  50. U. Passow, A.L. Alldredge, A dye-binding assay for spectrophotometric measurement of transparent exopolymer particles (TEP), Limnol. Oceanogr., 40 (1995) 1326–1335.
  51. Y. Chen, G. Dong, J. Han, B.W. Wah, J. Wang, Multi- Dimensional Regression Analysis of Time-Series Data Streams, In: Proceedings of the 28th VLDB International Conference on Very Large Databases, Hong Kong, China, 2002, pp. 323–334.
  52. S. Tonidandel, J.M. LeBreton, Relative importance analysis: a useful supplement to regression analysis, J. Bus. Psychol., 26 (2011) 1–9.
  53. J. Osborne, E. Waters, Four assumptions of multiple regression that researchers should always test, Pract. Assess. Res. Eval., 8 (2002) 1–9.
  54. M.N. Williams, C.A. Grajales, D. Kurkiewicz, Assumptions of multiple regression: correcting two misconceptions, Pract. Assess. Res. Eval., 18 (2013) 1–13.
  55. D. Lindell, A.F. Post, Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea, Limnol. Oceanogr., 40 (1995) 1130–1141.
  56. G. Yahel, A.F. Post, K. Fabricius, D. Marie, D. Vaulot, A. Genin, Phytoplankton distribution and grazing near coral reefs, Limnol. Oceanogr., 43 (1998) 551–563.
  57. U. Sommer, Scarcity of medium-sized phytoplankton in the northern Red Sea explained by string bottom-up and weak topdown control, Mar. Ecol. Prog. Ser., 197 (2000) 19–25.
  58. B. Kimor, B. Goldanski, Microplankton of the Gulf of Elat: aspects of seasonal and bathymetric distribution, Mar. Biol., 41 (1992) 55–67.
  59. F. Iuculano, I.P. Mazuecos, I. Reche, S. Agusti, Prochlorococcus as a possible source for transparent exopolymer particules (TEP), Front. Microbiol., 8 (2017) 709.
  60. S. Schuster, G.J. Herndl, Formation and significance of transparent exopolymer particles in the northern Adriatic Sea, Mar. Ecol. Prog. Ser., 124 (1995) 227–236.
  61. K. Busch, S. Endreas, M.H. Iverson, J. Michels, E.-M. Nöthig, A. Engel, Bacterial colonization and vertical distribution of marine gel particles (TEP and CSP) in the Arctic Fram Strait, Front. Mar. Sci., 4 (2017) 166.
  62. N. Ramaiah, V.V.S.S. Sarma, M. Gauns, M. Dileep Kumar, M. Madhupratap, Abundance and relationship of bacteria with transparent exopolymers during the 1996 summer monsoon in the Arabian Sea, J. Earth Syst. Sci., 109 (2000) 443–451.