References

  1. G.U. Chibuike, S.C. Obiora, Heavy metal polluted soils: effect on plants and bioremediation methods, Appl. Environ. Soil Sci., 2014 (2014) 752708.
  2. S. Frassinetti, G. Bronzetti, L. Caltavuturo, M. Cini, C.D. Croce, The role of zinc in life: a review, J. Environ. Pathol. Toxicol. Oncol., 25 (2006) 597–610.
  3. U.S. Geological Survey, Zinc Statistics and Information. Available at: http://minerals.usgs.gov/minerals/pubs/commodity/ zinc/ (accessed: September 27, 2019).
  4. J.F. Skidmore, Toxicity of zinc compounds to aquatic animals with special reference to fish, Q. Rev. Biol., 39 (1964) 227–248.
  5. G.R. Rout, P. Das, Effect of metal toxicity on plant growth and metabolism: I. Zinc, Agronomie, 23 (2003) 3–11.
  6. L.M. Plum, L. Rink, H. Haase, The essential toxin: impact of zinc on human health, Int. J. Environ. Res. Public Health, 7 (2010) 1342–1365.
  7. S. Khalid, M. Shahid, N.K. Niazi, B. Murtaza, I. Bibi, C. Dumat, A comparison of technologies for remediation of heavy metal contaminated soils, J. Geochem. Explor., 182 (2017) 247–268.
  8. T. Zhu, M. Dittrich, Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review, Front. Bioeng. Biotechnol., 4 (2016) 4.
  9. Y. Kitano, N. Kanamori, S. Yoshioka, Adsorption of zinc and copper ions on calcite and aragonite and its influence on the transformation of aragonite to calcite, Geochem. J., 10 (1976) 175–179.
  10. P. Papadopoulos, D.L. Rowell, The reactions of copper and zinc with calcium carbonate surfaces, Eur. J. Soil Sci., 40 (1989) 39–48.
  11. X. Ma, L. Li, L. Yang, C. Su, K. Wang, S. Yuan, J. Zhou, Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/ macroporous hybrid materials: adsorption isotherms and kinetic studies, J. Hazard. Mater., 209–210 (2012) 467–477.
  12. C.N. Mulligan, R.N. Yong, B.F. Gibbs, Remediation technologies for metal-contaminated soils and groundwater: an evaluation, Eng. Geol., 60 (2001) 193–207.
  13. Á.E. Torres-Aravena, C. Duarte-Nass, L. Azócar, R. Mella-Herrera, M. Rivas, D. Jeison, Can microbially induced calcite precipitation (MICP) through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters?, Crystals, 8 (2018) 438.
  14. D. Mujah, M.A. Shahin, L. Cheng, State-of-the-art review of biocementation by microbiallyinduced calcite precipitation (MICP) for soil stabilization, Geomicrobiol. J., 34 (2017) 524–537.
  15. W.G. Zumft, Cell biology and molecular basis of denitrification, Microbiol. Mol. Biol. Rev., 61 (1997) 533–616.
  16. B. Ji, K. Yang, L. Zhu, Y. Jiang, H. Wang, J. Zhou, H. Zhang, Aerobic denitrification: a review of important advances of the last 30 years, Biotechnol. Bioprocess Eng., 20 (2015) 643–651.
  17. I. Karatas, Microbiological Improvement of the Physical Properties of Soil, Ph.D. Thesis, Arizona State University, 2008.
  18. W.R.L. van der Star, E. Taher, M.P. Harkes, M. Blauw, M.C.M. van Loosdrecht, L.A. van Paassen, Use of Waste Stream and Microbes for in situ Transformation of Sand into Sandstone, C.F. Leung, J. Chu, R.F. Shen, Eds., Ground Improvement Technologies and Case Histories, Research Publishing Services, Singapore, 2009, pp. 177–182.
  19. L.A. van Paassen, C.M. Daza, M. Staal, D.Y. Sorokin, W. van der Zon, M.C.M. van Loosdrecht, Potential soil reinforcement by biological denitrification, Ecol. Eng., 36 (2010) 168–175.
  20. Y.Ç. Erşan, N. de Belie, N. Boon, Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment, Biochem. Eng. J., 101 (2015) 108–118.
  21. N. Hamdan, E. Kavazanjian Jr., B.E. Rittmann, I. Karatas, Carbonate mineral precipitation for soil improvement through microbial denitrification, Geomicrobiol. J., 34 (2016) 139–146.
  22. V.P. Pham, A. Nakano, W.R.L. van der Star, T.J. Heimovaara, L.A. van Paassen, Applying MICP by denitrification in soils: a process analysis, Environ. Geotech., 5 (2018) 79–93.
  23. I.J. Winograd, F.N. Robertson, Deep oxygenated ground water: anomaly or common occurrence?, Science, 216 (1982) 1227–1230.
  24. F. Widdel, G.-W. Kohring, F. Mayer, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov. and Desulfonema magnum sp. nov., Arch. Microbiol., 134 (1983) 286–294.
  25. A. Hiraishi, Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification, Lett. Appl. Microbiol., 15 (1992) 210–213.
  26. W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüßmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, K.-H. Schleifer, ARB: a software environment for sequence data, Nucleic Acids Res., 32 (2004) 1363–1371.
  27. G.A. Somerville, R.A. Proctor, Cultivation conditions and the diffusion of oxygen into culture media: the rationale for the flask-to-medium ratio in microbiology, BMC Microbiol., 13 (2013) 9.
  28. E. Stevens, M. Laabei, S. Gardner, G.A. Somerville, R.C. Massey, Cytolytic toxin production by Staphylococcus aureus is dependent upon the activity of the protoheme IX farnesyltransferase, Sci. Rep., 7 (2017) 13744.
  29. R. Kuerbis, Y.P. Vaid, Sand sample preparation – the slurry deposition method, Soils Found., 28 (1988) 107–118.
  30. K. Terzaghi, R.B. Peck, Soil Mechanics in Engineering Practices, John Wiley & Sons Inc., New York, NY, 1948.
  31. D. Jenkins, L.L. Medsker, Brucine method for the determination of nitrate in ocean, estuarine, and fresh waters, Anal. Chem., 36 (1964) 610–612.
  32. D. Tsikas, Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research, J. Chromatogr. B, 851 (2007) 51–70.
  33. N. Takaya, M.A.B. Catalan-Sakairi, Y. Sakaguchi, I. Kato, Z. Zhou, H. Shoun, Aerobic denitrifying bacteria that produce low levels of nitrous oxide, Appl. Environ. Microbiol., 69 (2003) 3152–3157.
  34. K. Towner, The genus Acinetobacter, Prokaryotes, 6 (2006) 746–758.
  35. W.M. Lewis Jr., D.P. Morris, Toxicity of nitrite to fish: a review, Trans. Am. Fish. Soc., 115 (1986) 183–195.
  36. A.M. Fan, V.E. Steinberg, Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity, Regul. Toxicol. Pharm., 23 (1996) 35–43.
  37. H. Kroupova, J. Machova, Z. Svobodova, Nitrite influence on fish: a review, Vet. Med., 50 (2005) 461–471.
  38. T.H. Christensen, P. Kjeldsen, H.-J. Albrechtsen, G. Heron, P.H. Nielsen, P.L. Bjerg, P.E. Holm, Attenuation of landfill leachate pollutants in aquifers, Crit. Rev. Environ. Sci. Technol., 24 (1994) 119–202.