References

  1. H.P.S.A. Khalil, A.H. Bhat, A.F.I. Yusra, Green composites from sustainable cellulose nanofibrils: a review, Carbohydr. Polym., 87 (2012) 963–979.
  2. I. Michalak, K. Chojnacka, A. Witek-Krowiak, State of the art for the biosorption process—a review, Appl. Biochem. Biotechnol., 170 (2013) 1389–1416.
  3. C.R.T. Tarley, M.A.Z. Arruda, Natural adsorbents: potential and applications of natural sponge (Luffa cylindrica) in lead removal in wastewater laboratory, Rev. Anal., 4 (2003) 26–31.
  4. M. Riazi, A.R. Keshtkar, M.A. Moosavian, Batch and continuous fixed-bed column biosorption of thorium(IV) from aqueous solutions: equilibrium and dynamic modeling, J. Radioanal. Nucl. Chem., 301 (2014) 493–503.
  5. A. Nakajima, T. Tsuruta, Competitive biosorption of thorium and uranium by Micrococcus luteus, J. Radioanal. Nucl. Chem., 260 (2004) 13–18.
  6. L. Zhou, Y. Wang, H. Zou, X. Liang, K. Zeng, Z. Liu, A.A. Adesina, Biosorption characteristics of uranium(VI) and thorium(IV) ions from aqueous solution using CaCl2-modified Giant Kelp biomass, J. Radioanal. Nucl. Chem., 307 (2016) 635–644.
  7. P.D. Bhalara, D. Punetha, K. Balasubramanian, Kinetic and isotherm analysis for selective thorium(IV) retrieval from aqueous environment using eco-friendly cellulose composite, Int. J. Environ. Sci. Technol., 12 (2015) 3095–3106.
  8. A. Kilincarslan Kaygun, S. Akyil, Study of the behavior of thorium adsorption on PAN/zeolite composite adsorbent, J. Hazard. Mater., 147 (2007) 357–362
  9. M. Metaxas, V. Kasselouri-Rigopoulou, P. Galiatsatou, C. Konstantopoulou, D. Oikonomou, Thorium removal by different adsorbents, J. Hazard. Mater., 97 (2003) 71–82.
  10. I. Liatsou, E. Christodoulou, I. Pashalidis, Thorium adsorption by oxidized biochar fibers derived from Luffa cylindrica sponges, J. Radioanal. Nucl. Chem., 311 (2018) 871–875.
  11. L. Hadjittofi, I. Pashalidis, Thorium removal from acidic aqueous solutions by activated biochar derived from cactus fibers, Desal. Water Treat., 57 (2016) 27864–27868.
  12. Y. Li, C. Wang, Z. Guo, C. Liu, W. Wu, Sorption of thorium(IV) from aqueous solutions by graphene oxide, J. Radioanal. Nucl. Chem., 299 (2014) 1683–1691.
  13. I. Liatsou, P. Constantinou, I. Pashalidis, Copper binding by activated biochar fibers derived from Luffa cylindrica, Water Air Soil Pollut., 228 (2017) 255.
  14. I. Liatsou, G. Michail, M. Demetriou, I. Pashalidis, Uranium binding by biochar fibers derived from Luffa cylindrica after controlled surface oxidation, J. Radioanal. Nucl. Chem., 311 (2017) 871–875.
  15. L. Hadjittofi, M. Prodromou, I. Pashalidis, Activated biochar derived from cactus fibers – preparation, characterization, and application on Cu(II) removal from aqueous solutions, Bioresour. Technol., 159 (2014) 460–464.
  16. IAEA: Thorium Fuel Utilization: Options and Trends, Proceedings of Three IAEA Meetings held in Vienna in 1997, 1998 and 1999, IAEA-TECDOC-1319, Vienna, 2002.
  17. B.L.K. Somayajulu, E.D. Goldberg, Thorium and uranium isotopes in seawater and sediments, Earth Planet. Sci. Lett., 1 (1966) 102–106.
  18. Th. Fanghänel, V. Neck, Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides, Pure Appl. Chem., 74 (2002) 1895–1907.
  19. C. Kutahyali, M. Eral, Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects, J. Nucl. Mater., 396 (2010) 251–256.
  20. K. Philippou, I. Savva, I. Pashalidis, Uranium(VI) binding by pine needles prior and after chemical modification, J. Radioanal. Nucl. Chem., 318 (2018) 2205–2211.
  21. D. Hritcu, D. Humelnicu, G. Dodi, M.I. Popa, Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions, Carbohydr. Polym., 87 (2012) 1185–1191.
  22. P. Paschalidou, I. Liatsou, I. Pashalidis, C.R. Theocharis, The effect of surface properties on the uranium adsorption by mesoporous ceria, J. Radioanal. Nucl. Chem., 318 (2018) 2193–2197.
  23. T. Chen, N. Zhang, Z. Xu, X. Hu, Z. Ding, Integrated comparisons of thorium(IV) adsorption onto alkali-treated duckweed biomass and duckweed-derived hydrothermal and pyrolytic biochar, Environ. Sci. Pollut. Res., 26 (2019) 2523–2530.
  24. N. Pan, J. Deng, D. Guan, Y. Jin, C. Xia, Adsorption characteristics of Th(IV) ions on reduced graphene oxide from aqueous solutions, Appl. Surf. Sci., 287 (2013) 478–483.
  25. P. Atkins, J. De Paula, Physical Chemistry, Oxford University Press, UK, 2010.