References

  1. E. Giannakopoulos, K.C. Christoforidis, A. Tsipis, M. Jerzykiewicz, Y. Deligiannakis, Influence of Pb (II) on the radical properties of humic substances and model compounds, J. Phys. Chem. A, 109 (2005) 2223–2232.
  2. P.Z. Araujo, P.J. Morando, M.A. Blesa, Interaction of catechol and gallic acid with titanium dioxide in aqueous suspensions. 1. Equilibrium studies, Langmuir, 21 (2005) 3470–3474.
  3. N. Quici, M.I. Litter, A.M. Braun, E. Oliveros, Vacuum-UVphotolysis of aqueous solutions of citric and gallic acids, J. Photochem. Photobiol., A, 197 (2008) 306–312.
  4. F.F. Liu, S.G. Wang, J.L. Fan, G.H. Ma, Adsorption of natural organic matter surrogates from aqueous solution by multiwall carbon nanotubes, J. Phys. Chem. C, 116 (2012) 25783–25789.
  5. H. Ouachtak, S. Akhouairi, A.A. Addi, R.A. Akbour, A. Jada, J. Douch, M. Hamdani, Mobility and retention of phenolic acids through a goethite-coated quartz sand column, Colloids Surf., A, 546 (2018) 9–19.
  6. X. Guan, S. Yan, Z. Xu, H. Fan, Gallic acid-conjugated iron oxide nanocomposite: an efficient, separable, and reusable adsorbent for remediation of Al (III)-contaminated tannery wastewater, J. Environ. Chem. Eng., 5 (2017) 479–487.
  7. D. Guo, Z. Zhang, D. Liu, H. Zheng, H. Chen, K. Chen, A comparative study on the degradation of gallic acid by Aspergillus oryzae and Phanerochaete chrysosporium, Water Sci. Technol., 70 (2014) 175–181.
  8. N. Saikia, J. Sarma, J.M. Borah, S. Mahiuddin, Adsorption of 3, 4-dihydroxybenzoic acid onto hematite surface in aqueous medium: importance of position of phenolic–OH groups and understanding of the same using catechol as an auxiliary model, J. Colloid Interface Sci., 398 (2013) 227–233.
  9. B. Cagnon, O. Chedeville, J.F. Cherrier, V. Caqueret, C. Porte, Evolution of adsorption kinetics and isotherms of gallic acid on an activated carbon oxidized by ozone: comparison to the raw material, J. Taiwan Inst. Chem. Eng., 42 (2011) 996–1003.
  10. F. Han, C. Xu, W.Z. Sun, S.T. Yu, M. Xian, Effective removal of salicylic and gallic acids from single component and impuritycontaining systems using an isatin-modified adsorption resin, RSC Adv., 7 (2017) 23164–23175.
  11. J.J. Rook, Formation of haloforms during chlorination of natural waters, J. Water Treat. Exam., 23 (1974) 234–243.
  12. E. Utrera-Hidalgo, C. Moreno-Castilla, J. Rivera-Utrilla, M.A. Ferro-García, F. Carrasco-Marín, Activated carbon columns as adsorbents of gallic acid from aqueous solutions: effect of the presence of different electrolytes, Carbon., 30 (1992) 107–111.
  13. J. Wang, A. Li, L. Xu, Y. Zhou, Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu (II) on their removal, J. Hazard. Mater., 169 (2009) 794–800.
  14. M. Goyal, R. Dhawan, M. Bhagat, Adsorption of gallic acid from aqueous solution using fixed-bed activated carbon columns, Sep. Sci. Technol., 45 (2010) 1265–1274.
  15. H. Ouachtak, R.A. Akbour, A. Jada, J. Douch, A.A. Addi, M. Hamdani, Mobility of trihydroxybenzene compounds through natural quartz sand: effect of hydroxyl groups positions, J. Colloid. Sci. Biotechnol., 5 (2016) 173–181.
  16. W.W Tang, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, C. Zhang, B.B. Huang, Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials, a review, Sci. Total Environ., 468 (2014) 1014–1027.
  17. A.E. Fazary, E. Hernowo, A.E. Angkawijaya, T.C. Chou, C.H. Lin, M. Taha, Y.H. Ju, Complex formation between ferric (III), chromium (III), and cupric (II) metal ions and (O, N) and (O, O) donor ligands with biological relevance in aqueous solution, J. Solution Chem., 40 (2011) 1965–1986.
  18. F.J. Beltràn, J.M. Encinar, J.F. Garacia-Araya, Oxidation by ozone and chlorine dioxide of two distillery wastewater contaminants: gallic acid and epicatechin, Water Res., 27 (1993) 1023–1032.
  19. M. Panizza, G. Cerisola, Electrochemical degradation of gallic acid on a BDD anode, Chemosphere, 77 (2009) 1060–1064.
  20. L. Khaouane, Y. Ammi, S. Hanini, Modeling the retention of organic compounds by nanofiltration and reverse osmosis membranes using bootstrap aggregated neural networks, Arabian. J. Sci. Eng., 42 (2017) 1443–1453.
  21. D.P. Zagklis, A.I. Vavouraki, M.E. Kornaros, C.A. Paraskeva, Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption, J. Hazard. Mater., 285 (2015) 69–76.
  22. Z. Borneman, V. Gökmen, H.H. Nijhuis, Selective removal of polyphenols and brown color in apple juices using PES/PVP membranes in a single ultrafiltration process, Sep. Purif. Technol., 22 (2001) 53–61.
  23. D. Gumy, A.G. Rincon, R. Hajdu, C. Pulgarin, Solar photocatalysis for detoxification and disinfection of water: different types of suspended and fixed TiO2 catalysts study, Sol. Energy, 80 (2006) 1376–1381.
  24. A.M. Silva, E. Nouli, N.P. Xekoukoulotakis, D. Mantzavinos, Effect of key operating parameters on phenols degradation during H2O2-assisted TiO2 photocatalytic treatment of simulated and actual olive mill wastewaters, Appl. Catal., B, 73 (2007) 11–22.
  25. E. Lefebvre, B. Legube, Coagulation-floculation par le chlorure ferrique de quelques acides organiques et phenols en solution aqueuse, Water Res., 27 (1993) 433–447.
  26. P.C. Papaphilippou, C. Yiannapas, M. Politi, V.M. Daskalaki, C. Michael, N. Kalogerakis, D. Fatta-Kassinos, Sequential coagulation–flocculation, solvent extraction and photo-Fenton oxidation for the valorization and treatment of olive mill effluent, Chem. Eng. J., 224 (2013) 82–88.
  27. M. Mahdavi, M.M. Amin, Y. Hajizadeh, H. Farrokhzadeh, A. Ebrahimi, Removal of different NOM fractions from spent filter backwash water by polyaluminum ferric chloride and ferric chloride, Arabian. J. Sci. Eng., 42 (2017) 1497–1504.
  28. H.C. Kim, S.J. Park, C.G. Lee, Y.U. Han, J.A. Park, S.B. Kim, Humic acid removal from water by iron-coated sand: a column experiment, Environ. Eng. Res., 14 (2009) 41–47.
  29. A. Genz, B. Baumgarten, M. Goernitz, M. Jekel, NOM removal by adsorption onto granular ferric hydroxide: equilibrium, kinetics, filter and regeneration studies, Water Res., 42 (2008) 238–248.
  30. R.A. Akbour, H. Ouachtak, A. Jada, S. Akhouairi, A.A. Addi, J. Douch, M. Hamdani, Humic acid covered alumina as adsorbent for the removal of organic dye from colored effluents, Desal. Water Treat., 112 (2018) 207–217.
  31. C. Dong, W. Chen, C. Liu, Y. Liu, H. Liu, Synthesis of magnetic chitosan nanoparticle and its adsorption property for humic acid from aqueous solution, Colloids Surf., A, 446 (2014) 179–189.
  32. H. Ouachtak, R.A. Akbour, J. Douch, A. Jada, M. Hamdani, Removal from water and adsorption onto natural quartz sand of hydroquinone, J. Encapsulation Adsorpt. Sci., 5 (2015) 131–143.
  33. A. Bhatnagar, M. Sillanpää, Removal of natural organic matter (NOM) and its constituents from water by adsorption, A review, Chemosphere, 166 (2017) 497–510.
  34. Z. Zhang, Q. Pang, M. Li, H. Zheng, H. Chen, K. Chen, Optimization of the condition for adsorption of gallic acid by Aspergillus oryzae mycelia using Box–Behnken design, Environ. Sci. Pollut. Res., 22 (2015) 1085–1094.
  35. M.Y. Chang, R.S. Juang, Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay, J. Colloid Interface Sci., 278 (2004) 18–25.
  36. T.S. Anirudhan, M. Ramachandran, Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay, J. Colloid Interface Sci., 299 (2006) 116–124.
  37. T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution, J. Colloid Interface Sci., 333 (2009) 114–119.
  38. R.D. Vidic, M.T. Suidan, Role of dissolved oxygen on the adsorptive capacity of activated carbon for synthetic and natural organic matter, Environ. Sci. Technol., 25 (1991) 1612–1618.
  39. J.F. Garcia-Araya, F.J. Beltran, P. Alvarez, F.J. Masa, Activated carbon adsorption of some phenolic compounds present in agroindustrial wastewater, Adsorption, 9 (2003) 107–115.
  40. K.H. Choo, S.K. Kang, Removal of residual organic matter from secondary effluent by iron oxides adsorption, Desalination, 154 (2003) 139–146.
  41. X.P. Qin, F. Liu, G.C. Wang, H. Hou, F.S. Li, L.P. Wang, Fractionation of humic acid upon adsorption to goethite: batch and column studies, Chem. Eng. J., 269 (2015) 272–278.
  42. C.H. Lai, C.Y. Chen, B.L. Wei, C.W. Lee, Adsorptive characteristics of cadmium and lead on the goethite-coated sand surface, J. Environ. Sci. Health., Part A, 36 (2001) 747–763.
  43. J.L. Gong, Y.L. Zhang, Y. Jiang, G.M. Zeng, Z.H. Cui, K. Liu, C.H. Deng, Q.Y. Niu, J.H. Deng, S.Y. Huan, Continuous adsorption of Pb (II) and methylene blue by engineered graphite oxide-coated sand in fixed-bed column, Appl. Surf. Sci., 330 (2015) 148–157.
  44. D. Dong, X. Hua, Y. Li, J. Zhang, D. Yan, Cd adsorption properties of components in different freshwater surface coatings: the important role of ferromanganese oxides, Environ. Sci. Technol., 37 (2003) 4106–4112.
  45. N. Boujelben, J. Bouzid, Z. Elouear, Studies of lead retention from aqueous solutions using iron-oxide-coated sorbents, Environ. Technol., 30 (2009) 737–746.
  46. R.A. Akbour, H. Amal, A. Ait Addi, J. Douch, A. Jada, M. Hamdani, Transport and retention of humic acid through natural quartz sand: influence of the ionic strength and the nature of divalent cation, Colloids Surf., A, 436 (2013) 589–598.
  47. A. Scheidegger, M. Borkovec, H. Sticher, Coating of silica sand with goethite: preparation and analytical identification, Geoderma, 58 (1993) 43–65.
  48. Y. Xu, L. Axe, Synthesis and characterization of iron oxidecoated silica and its effect on metal adsorption, J. Colloid Interface Sci., 282 (2005) 11–19.
  49. B. Rusch, K. Hanna, B. Humbert, Coating of quartz silica with iron oxides: Characterization and surface reactivity of iron coating phases, Colloids Surf., A, 353 (2010) 172–180.
  50. Y.S. Hwang, J.J. Lenhart, Dicarboxylic acid transport through hematite-coated sand, Chemosphere, 78 (2010) 1049–1055.
  51. T. Tosco, J. Bosch, R.U. Meckenstock, R. Sethi, Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate, Environ. Sci. Technol., 46 (2012) 4008–4015.
  52. R. El Haouti, H. Ouachtak, A. El Guerdaoui, A. Amedlous, E. Amaterz, R. Haounati, A. Ait Addi, N. El Alem, M.L. Taha, Cationic dyes adsorption by Na-Montmorillonite Nano Clay: experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations, J. Mol. Liq., 290 (2019) 111139.
  53. H.D. Ruan, R.L. Frost, J.T. Kloprogge, L. Duong, Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite, Spectrochim. Acta, Part A, 58 (2002) 967–981.
  54. A. Davantès, G. Lefèvre, In situ characterization of (poly) molybdate and (poly) tungstate ions sorbed onto iron (hydr) oxides by ATR-FTIR spectroscopy, Eur. Phys. J. Spec. Top., 224 (2015) 1977–1983.
  55. M.L.G. Vieira, V.M. Esquerdo, L.R. Nobre, G.L. Dotto, L.A.A. Pinto, Glass beads coated with chitosan for the food azo dyes adsorption in a fixed-bed column, J. Ind. Eng. Chem., 20 (2014) 3387–3393.
  56. A.A. Ahmad, B.H. Hameed, Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste, J. Hazard. Mater., 175 (2010) 298–303.
  57. Y. Wu, K. Zhou, S. Dong, W. Yu, H. Zhang, Recovery of gallic acid from gallic acid processing wastewater, Environ. Technol., 36 (2015) 661–666.
  58. K. Hanna, L. Lassabatere, B. Bechet, Transport of two naphthoic acids and salicylic acid in soil: experimental study and empirical modeling, Water Res., 46 (2012) 4457–4467.
  59. X. Yang, Z. Shi, L. Liu, Adsorption of Sb (III) from aqueous solution by QFGO particles in batch and fixed-bed systems, Chem. Eng. J., 260 (2015) 444–453.
  60. G. Nazari, H. Abolghasemi, M. Esmaieli, E.S. Pouya, Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: a fixed-bed column study, Appl. Surf. Sci., 375 (2016) 144–153.
  61. F.J. García-Mateos, R. Ruiz-Rosas, M.D. Marqués, L.M. Cotoruelo, J. Rodríguez-Mirasol, T. Cordero, Removal of paracetamol on biomass-derived activated carbon: modeling the fixed-bed breakthrough curves using batch adsorption experiments, Chem. Eng. J., 279 (2015) 18–30.
  62. S. Akhouairi, H. Ouachtak, A.A. Addi, A. Jada, J. Douch, Natural sawdust as adsorbent for the eriochrome black t dye removal from aqueous solution, Water Air Soil Pollut., 230 (2019) 181.
  63. H.C. Thomas, Heterogeneous ion exchange in a flowing system, J. Am. Chem. Soc., 66 (1944) 1664–1666.
  64. Z. Aksu, F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39 (2004) 599–613.
  65. A.P. Lim, A.Z. Aris, Continuous fixed-bed column study and adsorption modeling: removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons, Biochem. Eng. J., 87 (2014) 50–61.
  66. Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life, Am. Ind. Hyg. Assoc. J., 45 (1984) 509–516.
  67. T. Ataei-Germi, A. Nematollahzadeh, Bimodal porous silica microspheres decorated with polydopamine nanoparticles for the adsorption of methylene blue in fixed-bed columns, J. Colloid Interface Sci., 470 (2016) 172–182.
  68. M. Rabiei, H. Sabahi, A.H. Rezayan, Gallic acid-loaded montmorillonite nanostructure as a new controlled release system, Appl. Clay Sci., 119 (2016) 236–242.
  69. I.Y. Tóth, M. Szekeres, R. Turcu, S. Sáringer, E. Illés, D. Nesztor, E. Tombácz, Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core–shell magnetite nanoparticles, Langmuir, 30 (2014) 15451–15461.
  70. I.A. Jankovic, Z.V. Saponjic, M.I. Comor, J.M. Nedeljković, Surface modification of colloidal TiO2 nanoparticles with bidentate benzene derivatives, J. Phys. Chem. C, 113 (2009) 12645–12652.