References

  1. S. He, J.H. Wu, Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi County, Northwest China, Exposure Health, 11 (2019) 125–137.
  2. P.Y. Li, X.Y. Li, X.Y. Meng, M.N. Li, Y.T. Zhang, Appraising groundwater quality and health risks from contamination in a semiarid region of Northwest China, Exposure Health, 8 (2016) 361–379.
  3. P.Y. Li, H. Qian, J.H. Wu, Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China, Int. J. Water Resour. Dev., 34 (2018) 337–353.
  4. W.K. Wang, Z.Y. Zhang, L. Duan, Z.F. Wang, Y.Q. Zhao, Q. Zhang, M.L. Dai, H.Z. Liu, X.Y. Zheng, Y.B. Sun, Response of the groundwater system in the Guanzhong Basin (central China) to climate change and human activities, Hydrogeol. J., 26 (2018) 1429–1441.
  5. M.E. Zabala, S. Martínez, M. Manzano, L. Vives, Groundwater chemical baseline values to assess the recovery plan in the Matanza-Riachuelo River basin, Argentina, Sci. Total Environ., 541 (2016) 1516–1530.
  6. J. Liu, D.W. Jin, T.T. Wang, M. Gao, J. Yang, Q.M. Wang, Hydrogeochemical processes and quality assessment of shallow groundwater in Chenqi coalfield, Inner Mongolia, China, Environ. Earth Sci., 78 (2019), https://doi.org/10.1007/ s12665–019–8355–4.
  7. P.Y. Li, J.H. Wu, H. Qian, Regulation of secondary soil salinization in semi-arid regions: a simulation research in the Nanshantaizi area along the Silk Road, Northwest China, Environ. Earth Sci., 75 (2016) 698.
  8. J. Chen, H. Wu, H. Qian, Y.Y. Gao, Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of Northwest China, Exposure Health, 9 (2017) 183–195.
  9. N. Adimalla, H. Qian, Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, South India, Ecotoxicol. Environ. Saf., 176 (2019) 153–161.
  10. P.Y. Li, R. Tian, C.Y. Xue, J.H. Wu, Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on Western China, Environ. Sci. Pollut. Res., 24 (2017) 13224–13234.
  11. B. Huang, Z.W. Li, Z.L. Chen, G.Q. Chen, C. Zhang, J.Q. Huang, X.D. Nie, W.P. Xiong, G.M. Zeng, Study and health risk assessment of the occurrence of iron and manganese in groundwater at the terminal of the Xiangjiang River, Environ. Sci. Pollut. Res., 22 (2015) 19912–19921.
  12. L.Y. Chai, Z.X. Wang, Y.Y. Wang, Z.H. Yang, H.Y. Wang, X. Wu, Ingestion risks of metals in groundwater based on TIN model and dose-response assessment — a case study in the Xiangjiang watershed, central-south China, Sci. Total Environ., 408 (2010) 3118–3124.
  13. WHO, Guidelines for Drinking-Water Quality, Fourth Edition Incorporating the First Addendum, World Health Organization, Geneva, 2017.
  14. S.C. Homoncik, A.M. Macdonald, K.V. Heal, B.É.Ó. Dochartaigh, B.T. Ngwenya, Manganese concentrations in Scottish groundwater, Sci. Total Environ., 408 (2010) 2467–2473.
  15. C.L. la Keen, S. Zidenberg-Cherr, Manganese Toxicity in Humans and Experimental Animals, M. Aschner, J.R. Connor, D.C. Dorman, E.A. Malecki, K.E. Vrana, Eds., Manganese in Health and Disease: From Transport to Neurotoxicity, CRC Press, London, 1994, pp. 193–205.
  16. WHO, Guidelines for Drinking-Water Quality, 3rd ed., Volume 1: Recommendations, World Health Organization, Geneva, 2004.
  17. WHO, Histories of Guideline Development for the Fourth Edition: Chemical Fact Sheets, Chemical Contaminants in Drinking-Water, Manganese: History of Guideline Development, 2011. Available at: http://www.who.int/water_ sanitation_health/dwq/chemicals/history_guideline_mang.pdf [accessed 13 October 2011].
  18. WHO, Guidelines for Drinking-Water Quality, 4th ed., World Health Organization, Geneva, 2011.
  19. S.H. Frisbie, E.J. Mitchell, H. Dustin, D.M. Maynard, B. Sarkar, World Health Organization discontinues its drinking-water guideline for manganese, Environ. Health Perspect., 120 (2012) 775–778.
  20. B. Barbeau, A. Carrière, M.F. Bouchard, Spatial and temporal variations of manganese concentrations in drinking water, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 46 (2011) 608–616.
  21. P. Chanpiwat, S. Sthiannopkao, K.H. Cho, K.-W. Kim, V. San, B. Suvanthong, C. Vongthavady, Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR, Environ. Pollut., 159 (2011) 567–576.
  22. O.J. Olapande, Trace metal pollution and physicochemical characteristics of Lake Kivu, Rwanda, Global J. Environ. Res., 5 (2011) 57–64.
  23. X. Fu, J. Su, Y. Sun, Distribution characteristics and cause analysis of iron and manganese pollution in groundwater of Qiqihar city, J. Arid Land Resour. Environ., 33 (2019) 121–127 (in Chinese).
  24. S. Yousef, A. Adem, T. Zoubeidi, M. Kosanovic, A.A. Mabrouk, V. Eapen, Attention deficit hyperactivity disorder and environmental toxic metal exposure in the United Arab Emirates, J. Trop Pediatr., 57 (2011) 457–460.
  25. M. Aschner, K.M. Erikson, E.H. Hernández, R. Tjalkens, Manganese and its role in Parkinson’s disease: from transport to neuropathology, Neuromolecular Med., 11 (2009) 252–266.
  26. T.R. Guilarte, Manganese and Parkinson’s disease: a critical review and new findings, Environ. Health Perspect., 118 (2010) 1071–1080.
  27. L. Zhang, Z.Y. Mo, J. Qin, Q. Li, Y.H. Wei, S.Y. Ma, Y.X. Xiong, G.Q. Liang, L. Qing, Z.M. Chen, X.B. Yang, Z.Y. Zhang, Y.F. Zou, Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice in a riverine area, South China, Sci. Total Environ., 530–531 (2015) 163–170.
  28. E. Siddiqui, J. Pandey, Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study, Environ. Sci. Pollut. Res., 26 (2019) 10926–10940.
  29. J.F. Tan, Groundwater Resources Evaluation of Wudong and Beizhong Water Sources in Hailar Basin, Master Thesis, JiLin University, JiLin, 2014, (in Chinese).
  30. Ministry of Environmental Protection of China, Water Quality Sampling — Technical Regulation of the Preservation and Handling of Samples (HJ 493–2009), China Environmental Science Press, Beijing in Chinese, 2009 (in Chinese).
  31. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, Standards for Groundwater Quality (GB/T 14848–2017), Standards Press of China, Beijing in Chinese, (2017) (in Chinese).
  32. P.Y. Li, H. Qian, K.W.F. Howard, J.H. Wu, X.S. Lyu, Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, Northwest China, Environ. Monit. Assess., 186 (2014) 1385–1398.
  33. I. Guagliardi, D. Cicchella, R. De Rosa, A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils, Water Air Soil Pollut., 223 (2012) 5983–5998.
  34. USEPA, Risk Assessment Guidance for Superfund, Vol. I., Human Health Evaluation Manual (Part A) Office of Emergency and Remedial Response, United States Environmental Protection Agency, Washington, DC, 1989.
  35. USEPA, Integrated Risk Information System, United States Environmental Protection Agency, 2012. Available at: http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction1/4iris.show SubstanceList Accessed 3 May 2012.
  36. Ministry of Environmental Protection of People’s Republic of China, Technical Guidance for Risk Assessment of Contaminated Sites, (HJ 25.3–2014), China Environmental Science Press, Beijing, 2014 (in Chinese).
  37. J. Lv, Y. Liu, Z.L. Zhang, J.R. Dai, Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils, J. Hazard. Mater., 261 (2013) 387–397.
  38. A.C. Bourg, C. Bertin, Seasonal and spatial trends in manganese solubility in an alluvial aquifer, Environ. Sci. Technol., 28 (1994) 868–876.
  39. K.J. Kim, H.-J. Kim, B.-Y. Choi, S.-H. Kim, K.-H. Park, E.Y. Park, D.-C. Koh, S.-T. Yun, Fe and Mn levels regulated by agricultural activities in alluvial groundwaters underneath a flooded paddy field, Appl. Geochem., 23 (2008) 44–57.
  40. S.M. Boudissa, J. Lambert, C. Müller, G. Kennedy, L. Gareau, J. Zayed, Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant, Sci. Total Environ., 361 (2006) 67–72.
  41. J. Luo, H. Zhang, Z. Wang, Y. Zhang, Distribution characteristics of minerals in soil and plants on Hulunbuir grassland, Pratacultural Sci., 12 (2018) 1332–1342, (in Chinese).
  42. P.Y. Li, X.D. He, Y. Li, G. Xiang, Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese Loess Plateau: a case study of Tongchuan, Northwest China, Exposure Health, 11 (2019) 95–107.
  43. W.H. Yu, C.M. Harvey, C.F. Harvey, Arsenic in groundwater in Bangladesh: a geostatistical and epidemiological framework for evaluating health effects and potential remedies, Water Resour. Res., 39 (2003) 377–380.
  44. G.M. Zeng, J. Liang, S.L. Guo, L. Shi, L. Xiang, X.D. Li, C.Y. Du, Spatial analysis of human health risk associated with ingesting manganese in Huangxing Town, Middle China, Chemosphere, 77 (2009) 368–375.
  45. Y. Zhang, B. Xu, Z.F. Guo, J.C. Han, H.H. Li, L. Jin, F. Chen, Y.Q. Xiong, Human health risk assessment of groundwater arsenic contamination in Jinghui irrigation district, China, J. Environ. Manage., 237 (2019) 163–169.