References
  -  M. Klučáková, R. Kolajová, Dissociation ability of humic acids:
    spectroscopic determination of pKa and comparison with
    multi-step mechanism, React. Funct. Polym., 78 (2014) 1–6. 
-  M. Klučáková, Conductometric study of the dissociation
    behavior of humic and fulvic acids, React. Funct. Polym.,
    128 (2018) 24–28. 
-  S.Q. Zhang, L. Yuan, W. Li, Z. Lin, Y.T. Li, S.W. Hu, B.Q. Zhao,
    Characterization of pH-fractionated humic acids derived from
    Chinese weathered coal, Chemosphere, 166 (2017) 334–342. 
-  K.-L. Chen, L.-C. Liu, W.-R. Chen, Adsorption of sulfamethoxazole
    and sulfapyridine antibiotics in high organic content
    soils, Environ. Pollut., 231 (2017) 1163–1171. 
-  R. Lu, G.-P. Sheng, Y. Liang, W.-H. Li, Z.-H. Tong, W. Chen,
    H.-Q. Yu, Characterizing the interactions between polycyclic
    aromatic hydrocarbons and fulvic acids in water, Environ. Sci.
    Pollut. Res., 20 (2013) 2220–2225. 
-  J. Xu, Y.-Y. Hu, X.-Y. Li, J.-J. Chen, G.-P. Sheng, Rapidly probing
    the interaction between sulfamethazine antibiotics and fulvic
    acids, Environ. Pollut., 243 (2018) 752–757. 
-  M. Klučáková, Dissociation properties and behavior of active
    humic fractions dissolved in aqueous systems, React. Funct.
    Polym., 109 (2016) 9–14. 
-  F. Lian, B.B. Sun, X. Chen, L.Y. Zhu, Z.Q. Liu, B.S. Xing, Effect of
    humic acid (HA) on sulfonamide sorption by biochars, Environ.
    Pollut., 204 (2015) 306–312. 
-  M. Grzegorczuk-Nowacka, A.M. Anielak, Effect of iron and
    aluminum on adsorption of fulvic acids on Norit ROW 0.8
    supra carbon, Environ. Eng. Sci., 34 (2017) 659–665. 
-  J.-C. Lou, C.-J. Chang, W.-H. Chen, W.-B. Tseng, J.-Y. Han,
    Removal of trihalomethanes and haloacetic acids from treated
    drinking water by biological activated carbon filter, Water
    Air Soil Pollut., 225 (2014) 1851–1859. 
-  F.J. Rodríguez, M. García-Valverde, Influence of preozonation
    on the adsorptivity of humic substances onto activated carbon,
    Environ. Sci. Pollut. Res., 23 (2016) 21980–21988. 
-  X. Zhong, C.W. Cui, S.L. Yu, The determination and fate of
    disinfection by-products from ozonation-chlorination of fulvic
    acid, Environ. Sci. Pollut. Res., 24 (2017) 6472–6480. 
-  M.J. Rodriguez, J.-B. Sérodes, Spatial and temporal evolution
    of trihalomethanes in three water distribution systems, Water
    Res., 35 (2001) 1572–1586. 
-  I. Toroz, V. Uyak, Seasonal variations of trihalomethanes (THMs)
    in water distribution networks of Istanbul City, Desalination,
    176 (2005) 127–141. 
-  X. Li, H.-b. Zhao, Development of a model for predicting
    trihalomethanes propagation in water distribution systems,
    Chemosphere, 62 (2006) 1026–1032. 
-  B. El-Attafia, M. Soraya, Presence and seasonal variation
    of trihalomethanes (THMs) levels in drinking tap water in
    Mostaganem Province in northwest Algeria, Electron Physician,
    9 (2017) 4364–4369. 
-  M. Fabbricino, G.V. Korshin, Formation of disinfection
    by-products and applicability of differential absorbance
    spectroscopy to monitor halogenation in chlorinated coastal
    and deep ocean seawater, Desalination, 170 (2005) 57–69. 
-  A. Włodyka-Bergier The effect of UV254 radiation on the
    formation of halogen organic disinfection by-products in pool
    water, Seria Rozprawy Monografie 309, Wydawnictwo AGH,
    Kraków, 309 (2016) 18–114, (in Polish). 
-  A.M. Anielak, M. Grzegorczuk, R. Schmidt, Effect of chloride
    ions on formation chloroorganic substances during oxidation of
    fulvic acids, Przem. Chem., 5 (2008) 404–407. 
-  K. Sazawa, H. Yoshida, K. Okusu, N. Hata, H. Kuramitz, Effects
    of forest fire on the properties of soil and humic substances
    extracted from forest soil in Gunma, Japan, Environ. Sci. Pollut.
    Res., 25 (2018) 30325–30338. 
-  T.T. Li, F.H. Song, J. Zhang, S. Liu, B.S. Xing, Y.C. Bai, Pyrolysis
    characteristics of soil humic substances using TG-FTIR-MS
    combined with kinetic models, Sci. Total Environ., 698 (2020),
    https://doi.org/10.1016/j.scitotenv.2019.134237. 
-  X.-S. He, B.-D. Xi, Z.-M. Wei, Y.-H. Jiang, C.-M. Geng,
    Y. Yang, Y. Yuan, H.-L. Liu, Physicochemical and spectroscopic
    characteristics of dissolved organic matter extracted from
    municipal solid waste (MSW) and their influence on the landfill
    biological stability, Bioresour. Technol., 102 (2011) 2322–2327. 
-  Y. Dang, Y.Q. Lei, Z. Liu, Y.T. Xue, D. Sun, L.-Y. Wang,
    D. Holmes, Impact of fulvic acids on bio-methanogenic
    treatment of municipal solid waste incineration leachate, Water
    Res., 106 (2016) 71–78. 
-  IHSS, International Humic Substance Society, 2014, Available
    at: http://www.humicsubstances.org/soilhafa.html. 
-  E.M. Thurman, R.L. Malcolm, Preparative isolation of aquatic
    humic substances, Environ. Sci. Technol., 15 (1981) 463–466. 
-  Y.L. Zhou, Y.B. Zhang, G.H. Li, Y.D. Wu, T. Jiang, A further study
    on adsorption interaction of humic acid on natural magnetite,
    hematite and quartz in iron ore pelletizing process: effect of the
    solution pH value, Powder Technol., 217 (2015) 155–166. 
-  B.R. Araújo, L.P.C. Romão, M.E. Doumer, A.S. Mangrich,
    Evaluation of the interactions between chitosan and humics in
    media for the controlled release of nitrogen fertilizer, J. Environ.
    Manage., 190 (2017) 122–131. 
-  S.L. Huo, B.D. Xi, H.C. Yu, L.S. He, S.L. Fan, H.L. Liu,
    Characteristics of dissolved organic matter (DOM) in leachate
    with different landfill ages, J. Environ. Sci., 20 (2008) 492–498. 
-  Q. Zhang, G.Q. Liang, T.F. Guo, P. He, X.B. Wang, W. Zhou,
    Evident variations of fungal and actinobacterial cellulolytic
    communities associated with different humified particlesize
    fractions in a long-term fertilizer experiment, Soil Biol.
    Biochem., 113 (2017) 1–13. 
-  J. Zhang, J.-L. Gong, G.-M. Zenga, X.-M. Ou, Y. Jiang,
    Y.-N. Chang, M. Guo, C. Zhang, H.-Y. Liu, Simultaneous
    removal of humic acid/fulvic acid and lead from landfill
    leachate using magnetic graphene oxide, Appl. Surf. Sci.,
    370 (2016) 335–350. 
-  A.M. Anielak, M. Kryłów, D. Łomińska-Płatek, Characterization
    of fulvic acids contained in municipal sewage purified
    with activated sludge, Arch. Environ. Prot., 44 (2018) 70–76. 
-  C. Xiaoli, T. Shimaoka, G. Qiang, Z. Youcai, Characterization
    of humic and fulvic acids extracted from landfill by elemental
    composition, 13C CP/MAS NMR and TMAH-Py-GC/MS,
    Waste Manage., 28 (2008) 896–903. 
-  D. Gajdošová, K. Novotná, P. Prošek, J. Havel, Separation and
    characterization of humic acids from Antarctica by capillary
    electrophoresis and matrix-assisted laser desorption ionization
    time-of-flight mass spectrometry: inclusion complexes of humic
    acids with cyclodextrins, J. Chromatogr. A, 1014 (2003) 117–127. 
-  H. Li, Y.K. Li, S.X. Zou, C.C. Li, Extracting humic acids from
    digested sludge by alkaline treatment and ultrafiltration,
    J. Mater. Cycles Waste Manage., 16 (2014) 93–100. 
-  J. Kuĉerík, P. Bursáková, A. Průšová, L. Grebíková,
    G.E. Schaumann, Hydration of humic and fulvic acids studied
    by DSC, J. Therm. Anal. Calorim., 110 (2012) 451–459. 
-  X. Xiao, B.-D. Xi, X.-S. He, H. Zhang, Y.-H. Li, S.Y. Pu,
    S.-J. Liu, M.-D. Yu, C. Yang, Redox properties and dechlorination
    capacities of landfill-derived humic-like acids, Environ. Pollut.,
      253 (2019) 488–496.