References

  1. B. Krajewska, Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 35 (2004) 126–139.
  2. C. Bullock, Immobilised enzymes. Sci. Progr., 78 (1995)119–134.
  3. J.M. Woodley, Immobilized biocatalysts. Solid Supports Catal. Org. Synth., (1992) 254–271.
  4. F. van de Velde, N.D. Lourenço, H.M. Pinheiro and M. Bakker, Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv. Synth. Catal., 344 (2002) 815–835.
  5. http://www.lsbu.ac.uk/biology/enztech/sources.html#tab2_1.
  6. S.G. Burton, Development of bioreactors for application of biocatalysts in biotransformations and bioremediation. Pure Appl. Chem., 73 (2001) 77–83.
  7. W.H. Scouten, J.H.T. Luong and R.S. Brown, Enzyme or protein immobilization techniques for applications in biosensor design. TIBTECH, 13 (1995) 178–185.
  8. W. Tischer and F. Wedekind, Immobilized enzymes: methods and applications. Top Curr. Chem., 200 (1999) 95–126.
  9. L. Giorno and E. Drioli, Biocatalytic membrane reactors: applications and perspective. TIBTECH, 18 (2000) 339–348.
  10. E. Drioli and L. Giorno, Biocatalytic Membrane Reactors—Applications in Biotechnology and the Pharmaceutical Industry, T.J. International, Padstow, UK, 1999, pp. 51–54.
  11. G. Carrea and S. Riva, Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. Ed., 39 (2000) 2226–2254.
  12. M. Ulbricht and A. Papra, Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding. Enzyme Microb. Technol., 20 (1997) 61–68.
  13. V.M. Balcăo, A.L. Pavia and F.X. Malcata, Bioreactors with immobilized lipase state of the art. Enzyme Microb. Technol., 18 (1996) 392–416.
  14. http://infosys.korea.ac.kr/ippage/e/ipdata/2004/02/file/e200402-1001.pdf.
  15. A.P.V. Goncalves, J.M. Lopes, F. Lemos, F.R. Ribeiro and D.M.F. Prazeres, Effect of the immobilization support on the hydrolytic activity of a cutinase from Fusarium solani pisi. Enzyme Microb. Technol., 20 (1997) 93–101.
  16. D. Belhocine, H. Mokrane, H. Grib, H. Lounici, A. Pauss and N. Mameri, Optimization of enzymatic hydrolysis of haemoglobin in a continuous membrane bioreactor. Chem. Eng. J., 76 (2000) 189–196.
  17. E. Drioli and L. Giorno, Catalytic membrane reactors for bioconversion of low water soluble subtrate, in: Biocatalytic Membrane Reactors, Taylor Francis, 1999, pp. 153–187.
  18. K. Sakaki, L. Giorno and E. Erioli, Lipase-catalyzed optical resolution of racemic naproxen in biphasic enzyme membrane reactors. J. Membr. Sci., 184 (2001) 27–38.
  19. S.T. Bouwer, F.P. Cuperus and J.T.P. Derksen, The performance of enzyme-membrane reactors with immobilized lipase. Enzyme Microb. Technol., 21 (1997) 291–296.
  20. K. Sakaki, S. Hara and N. Itoh, Optical resolution of racemic 2-hydroxy octanoic acid using biphasic enzyme membrane reactor. Desalination, 149 (2002) 247–252.
  21. L. Giorno, N. Li and E. Drioli, Use of stable emulsion to improve stability, activity, and enantioselectivity of lipase immobilized in a membrane reactor. Biotechnol. Bioeng., 84 (2003) 677–685.
  22. L. Giorno, R. Molinari, E. Drioli, D. Bianchi and P. Cesti, Performance of a biphasic organic/aqueous hollow fiber reactor using immobilized lipase, J. Chem. Technol. Biotechnol. 64 (1995) 345–352.
  23. A. Gabelman and S.T. Hwang, Hollow fiber membrane contactors. J. Membr. Sci., 159 (1999) 61–106.
  24. M. Cheyran and M.A. Mehaia, in: Membrane Bioreactors, Membrane Separation in Biotechnology, W.C. McGregor, ed., Marcel Dekker, New York, 1986, pp. 255–301.
  25. Q. Gan, F. Baykara, H. Rahmat and L.R. Weatherley, Analysis of a direct contact membrane reactor for lipase catalysed oil hydrolysis in a dynamic emulsion system. Catal. Today, 56 (2000) 179–190.
  26. A. Mannheim and M. Cheyran, Continuous hydrolysis of milk protein in a membrane reactor. J. Food Sci., 55 (1990) 381–390.
  27. M.M. Hoq, T.Yamane, S. Shimizu, T. Funda and S. Ishida, Continuous hydrolysis of olive oil by lipase in microporous hydrophobic membrane bioreactor. J. Am. Oil Chem. Soc., 62 (1985) 1016–1021.
  28. Y. Pouliot, S.F. Gauthier and C. Bard, Fractionation of casein hydrolysates using polysulfone ultrafiltration hollow fiber membranes. J. Membr. Sci., 80 (1993) 257–264.
  29. S. Curcio, V. Calabro and G. Ioro, An experimental analysis of membrane bioreactor performances with immobilized chymosin. J. Membr. Sci., 173 (2000) 247–261.
  30. N. Cempel, J.M. Piot and D. Guillochon, Preparation of photodynamic hydrolysates from bovine haemoglobin. J. Agric. Food. Chem., 42 (1994) 2059–2063.
  31. P. Bressollier, J.M. Petit and R. Julien, Enzyme hydrolysis of plasma proteins in a CSTR ultrafiltration reactor: performance and modeling. Biotechnol. Bioeng., 31 (1988) 650–658.
  32. H. Tanigaki, Hydrolysis of soybean oil by lipase with a bioreactor having two different membranes. J. Ferment. Bioeng., 75 (1993) 53–57.
  33. L. Giorno, R. Molinari and E. Drioli, Experimental studies on enzyme membrane reactors in oil treatment, in: Advances in Oils and Fats, Antioxidants, and Oilsed By-products, Vol. 2, S.S. Koseoglu, et al., ed., AOCS Press, Champaign, IL, 1998, pp. 91–94.
  34. L. Giorno, R. Molinari, M. Natoli and E. Drioli, Hydrolysis and regioselective transesterification catalyzed by immobilized lipase in membrane bioreactors. J. Membr. Sci., 125 (1997) 177–187.
  35. A. Bhardwaj, J. Lee, S. Glauner, S. Ganapathi, D. Bhattacharyya and D.A. Butterfield, Biofunctional membranes: an EPR study of active site structure and stability of papain non-covalently immobilized on the surface of modified poly (ether) sulfone membranes through the avidin-biotin linkage. J. Membr. Sci., 119 (1996) 241–252.
  36. F.X. Yang, T.W. Weber, J.L. Gainer and G. Carta, Synthesis of lovastatin with immobilized Candida rugosa lipase in organic solvents: effects of reaction conditions on initial rates. Biotechnol. Bioeng., 56 (1997) 671–680.
  37. L. Giorno, E. Drioli, G. Carvoli, A. Cassano and L. Donato, Study of an enzyme membrane reactor with immobilized fumarase for production of L-malic acid. Biotechnol. Bioeng., 72 (2001) 77–84.
  38. H.A. Sousa, C.A.M. Afonso, J.P.B. Mota and J.G. Crespo, Modelling the enantioselective hydrolysis of a meso-diester using pig liver esterase in a two-phase hollow fibre reactor. Chem. Eng. Res. Des., 83 (2005) 285–294.
  39. M. Goto, Enzymatic resolution of racemic ibuprofen by surfactantcoated lipases in organic media. Biotechnol. Lett., 18 (1996) 839– 844.
  40. S.C. Stinson, Chiral drug interactions. Chem. Eng. News, 77 (1999) 101.
  41. A.L. Demain, Small bugs, big business: The economic power of the microbe. Biotechnol. Adv., 18 (2000) 499–514.
  42. M. Arroyo, I. De La Mata, C. Acebal and M.P. Castillon, Biotechnological applications of penicillin acylases: state-of-the-art. Appl. Microbiol. Biot., 60 (2003) 507–514.
  43. C.J. Gray, J.S. Narang and S.A. Barker, Immobilization of lipase from Candida cylindraceae and its use in the synthesis of menthol esters by transesterification. Enzyme Microbiol. Technol., 12 (1990) 800–807.
  44. A. Mustranta, Use of lipase in the resolution of racemic ibuprofen. Appl. Microbiol. Biotechnol., 38 (1992) 175–180.
  45. A. Wiseman, Designer enzyme and cell applications in industry and in environmental monitoring. J. Chem. Tech. Biotechnol., 56 (1993) 3–13.
  46. G. Jönsson and L. Gorton, An amperometric glucose sensor made by modification of a graphite electrode surface with immobilized glucose oxidase and adsorbed mediator. Biosens., 1 (1985) 355– 368.
  47. M. Demura, T. Asakura and T. Kuroo, Immobilization of biocatalysts with Bombyx mori silk fibroin by several kinds of physical treatment and its application to glucose sensors. Biosens., 4 (1989) 361–372.
  48. O. Fatibello-Filho, A. Suleiman and G.G. Guilbault, Enzyme electrode for the determination of aspartate. Biosens., 4 (1989) 313– 321.
  49. Y.A. Cho, H.S. Lee, G.S. Cha and Y.T. Lee, Fabrication of butyrylcholinesterase sensor using polyurethane-based ion-selective membranes. Biosens. Bioelectron., 14 (1999) 435–438.
  50. D.C. Taek, A.J. Ran, K.K. Sun and C.K. Hee, Reproducible fabrication of miniaturized glucose sensors: preparation of sensing membranes for continuous monitoring. Biosens. Bioelectron., 16 (2001) 1079–1087.
  51. X.H. Chen, Y.B. Hu and G.S. Wilson, Glucose microbiosensor based on alumina sol–gel matrix/electropolymerized composite membrane. Biosens. Bioelectron., 17 (2002) 1005–1013.
  52. X.F. Yang, Z.D. Zhou, D. Xiao and M.M.F. Choi, A fluorescent glucose biosensor based on immobilized glucose oxidase on bamboo inner shell membrane. Biosens. Bioelectron., 21 (2006) 1613–1620.
  53. A.K. Basu, P. Chattopadhyay, U. Roychudhuri and R. Chakraborty, A biosensor based on co-immobilized l-glutamate oxidase and L-glutamate dehydrogenase for analysis of monosodium glutamate in food. Biosens. Bioelectron., 21 (2006) 1968–1972.
  54. S.Q. Liu and Y.M. Sun, Co-immobilization of glucose oxidase and hexokinase on silicate hybrid sol–gel membrane for glucose and ATP detections. Biosens. Bioelectron., 22 (2007) 905–911.
  55. S. S. Ordóñez and E. Fàbregas, New antibodies immobilization system into a graphite–polysulfone membrane for amperometric immunosensors. Biosens. Bioelectron., 22 (2007) 965–972.
  56. I. Chibata, Immobilized aspartase-containing microbial cells. Appl. Microbiol., 27 (1974) 878–885.
  57. M. Pastore and F. Morisi, Lactose reduction of milk by fiberentrapped $-galactosidase. Pilot-plant experiments. Methods. Enzymol., 44 (1976) 822–830.
  58. E. Battistel, Enzyme resolution of (S)-(+)-naproxen in a continuous reactor. Biotechnol. Bioeng., 38 (1991) 659–644.
  59. H. Moueddeb, J. Sanchez, C. Bardot, M. Fick and H. Moueddeb, Membrane bioreactor for lactic acid production. J. Membr. Sci., 114 (1996) 59–71.
  60. S. Ganapathi-Desai, D.A. Butterfield and D. Bhattacharyya, Flatsheet and hollow fiber membrane bioreactors: A study of the kinetics and active site conformational changes of immobilized papain including sorption studies of reaction constituents. J. Chem. Technol. Biot., 64 (1995) 157–164.
  61. S. Ganapathi-Desai, D.A. Butterfield and D. Bhattacharyya, Kinetics and active fraction determination of a protease enzyme immobilized on functionalized membranes: Mathematical modeling and experimental results. Biotechnol. Prog., 14 (1998) 865–873.
  62. D.A. Butterfield, D. Bhattacharyya, S. Daunert and L. Bachas, Catalytic biofunctional membranes containing site-specifically immobilized enzyme arrays: a review. J. Membr. Sci., 181 (2001) 29–37.
  63. D.A. Butterfield, J. Lee, S. Ganapathi and D. Bhattacharyya, Biofunctional membranes IV. Active site structure and stability of an immobilized enzyme, papain, on modified polysulfone membranes studies by electron paramagnetic resonance and kinetics. J. Membr. Sci., 91 (1994) 47–58.
  64. S. Ganapathi, D.A. Butterfield and D. Bhattacharyya, Flat sheet and hollow fiber membrane bioreactors: a study of the kinetics and active site conformational changes of immobilized papain including sorption studies of reaction constituents. J. Chem. Technol. Biotechnol., 64 (1995) 157–166.
  65. S. Ganapathi, D.A. Butterfield and D. Bhattacharyya, Kinetics and active fraction determination of a protease enzyme immobilized on functionalized membranes: mathematical modeling and experimental results. Biotechnol. Prog., 14 (1998) 865–877.
  66. P. Zhuang and D.A. Butterfield, Optimization of covalently coupling enzymes to polymeric membranes: EPR studies of papain. J. Appl. Polym. Sci., 47 (1993) 1329–1338.
  67. P. Zhuang and D.A. Butterfield, Spin labeling and kinetic studies of a membrane-immobilized proteolytic enzyme. Biotechnol. Prog., 8 (1992) 204–219.
  68. P. Zhuang and D.A. Butterfield, Structural and enzymatic characterizations of papain immobilized onto vinyl alcohol/vinyl butyral copolymer membrane. J. Membr. Sci., 66 (1992) 247–257.
  69. S. Vishwanath, J. Wang, L.G. Bachas, D.A. Butterfield and D. Bhattacharyya, Site-directed and random immobilization of subtilisin on functionalized membranes: activity determination in aqueous and organic media. Biotech. Bioeng., 60 (1998) 608–616.
  70. Z.M. Liu, S. Tingry, C. Innocent, J. Durand, Z.K. Xu and P. Seta, Modification of microfiltration polypropylene membranes by allylamine plasma treatment-Influence of the attachment route on peroxidase immobilization and enzyme efficiency. Enzyme Microb. Technol., 39 (2006) 868–876.
  71. S. Vishwanath, D. Bhattacharyya, W. Huang and L.G. Bachas, Sitedirected and random enzyme immobilization on functionalized membranes: kinetic studies and models. J. Membr. Sci., 108 (1995) 1–13.
  72. S.K. Vishwanath, C.R. Watson, W. Huang, L.G. Bachas and D. Bhattacharyya, Kinetic studies of site-specifically and randomly immobilized alkaline phosphatase on functionalized membranes. J. Chem. Technol. Biotechnol., 68 (1997) 294–302.
  73. D.A. Butterfield, R. Subramaniam, D. Bhattacharyya, S. Viswanath, W. Huang and L. Bachas, Biofunctional membranes: electron paramagnetic resonance studies of the active site structure of enzymes site-specifically immobilized onto polymeric supports through molecular recognition. Polym. Mat. Sci. Eng., 76 (1997) 602–603.
  74. W. Huang, J. Wang, D. Bhattacharyya and L.G. Bachas, Improved enzymatic activity by site-specific immobilization of subtilisin. Anal. Chem., 69 (1997) 4601–4607.
  75. H.K.W. Kallwass, W. Parris, E.L.A. McFarlane, M. Gold and J.B. Jones, Site-specific immobilization of an L-lactate dehydrogenase via an engineered surface cysteine residue. Biotechnol. Lett., 15 (1993) 29–44.
  76. S.J. Vigmond, M. Iwakura, F. Mizutani and T. Katsura, Sitespecific immobilization of molecularly engineered dihydrofolatereductase to gold surfaces. Langmuir, 10 (1994) 2860–2862.
  77. T.M. Spitznagel, J.W. Jacobs and D.S. Clark, Random and sitespecific immobilization of catalytic antibodies. Enzyme Microb. Technol., 15 (1993) 916–921.
  78. E. Battistel, D. Bianchi, P. Cesti and C. Pina, Enzymatic resolution of (S)-(+)-naproxen in a continuous reactor. Biotechnol. Bioeng. 38 (1991) 659-664.
  79. J.Y. Xin, S.B. Li, Y. Xu, J.R. Chui and C.G. Xia, Dynamic enzymatic resolution of naproxen meyhyl ester in a membrane bioreactor. J. Chem. Biotechnol., 76 (2001) 579–585.
  80. M.J. Costello, A.G. Fane, P.A. Hogan and R.W. Schofield, The effect of shell-side hydrodynamics of axial flow hollow fibre modules. J. Membr. Sci., 80 (1993) 1–11.
  81. A. Guerra, G. Jonsson, A. Rasmussen, E. Waagner Nielsen and D. Edelsten, Low cross-flow velocity microfiltration of skim milk for removal of bacterial spores. Int. Diary J., 7 (1997) 849–861.
  82. U. Cocchini, C. Nicolella and A.G. Livingston, Braided silicone rubber membranes for organic extraction from aqueous solutions I. Mass transport studies. J. Membr. Sci., 199 (2002) 85–99.
  83. J.L. Lopez and S.L. Matson, A multiphase/extractive enzyme membrane reactor for production of diltiazem chiral intermediate. J. Membr. Sci., 125 (1997) 189–211.
  84. A.G. Livingston, J.P. Arcangeli, A.T. Boam, S. Zhang, M. Marangon and L.M. dos Santos, Extractive membrane bioreactors for detoxification of chemical industry wastes: process development. J. Membr. Sci., 151 (1998) 29–44.
  85. C. Nicolella, P. Pavasant and A.G. Livingston, Substrate counter diffusion and reaction in membrane-attached biofilms: mathematical analysis of rate limiting mechanisms. Chem. Eng. Sci., 55 (2000) 1385–1398.
  86. S.R. Wickramansinghe, M.J. Semmens and E.L. Cussler, Better hollow fiber contactors. J. Membr. Sci., 62 (1991) 371–388.
  87. L.M. Freitas dos Santos and G. Lo Biundo, Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor. Environ. Prog., 18 (1999) 34–39.
  88. T.A.C. Oliveira, U. Cocchini, J.T. Scarpello and A.G. Livingston, Pervaporation mass transfer with liquid flow in the transition regime. J. Membr. Sci., 183 (2001) 119–133.
  89. V. Gekas amd B. Hallström, Mass transfer in the membrane concentration polarisation layer under turbulent cross flow. I. Critical literature review and adaptation of existing Sherwood correlations to membrane operations. J. Membr. Sci., 30 (1987) 153–168.
  90. M.J. Costello, A.G. Fane, P.A. Hogan and R.W. Schofield, The effect of shell-side hydrodynamics on the performance of axial flow hollow fibre modules. J. Membr. Sci., 80 (1993) 1–15.
  91. M.G. Parvatiyar, Mass transfer in a membrane tube with turbulent flow of Newtonian and non-Newtonian fluids. J. Membr. Sci., 148 (1998) 45–57.
  92. R.M.C. Viegas, M. Rodríguez, S. Luque, J.R. Alvarez, I.M. Coelhoso and J.P.S.G. Crespo, Mass transfer correlations in membrane extraction: analysis of Wilson-plot methodology. J. Membr. Sci., 145 (1998) 129–142.
  93. J. Wu and V. Chen, Shell-side mass transfer performance of randomly packed hollow fibre models, J. Membr. Sci., 172 (2000) 59–74.
  94. R. Gawronski and B. Wrzesinska, Kinetics of solvent extraction in hollow fibre contactors. J. Membr. Sci., 168 (2000) 213–222.
  95. F. Lipnizki and R.W. Field, Mass transfer performance for hollow fibre modules with shell-side axial feed flow: using an engineering approach to develop a framework. J. Membr. Sci., 193 (2001) 195– 208.
  96. V. Calabrò, S. Curcio and G. Iorio, A theoretical analysis of transport phenomena in a hollow fiber membrane bioreactor with immobilized biocatalyst. J. Membr. Sci., 206 (2002) 217–241.
  97. A.Trusek-Holownia and A. Noworyta, Mass transfer in the membrane phase contactor with an enzyme gel layer immobilized on a membrane. Desalination, 162 (2004) 335–342.
  98. T.W. Xu and R.Q. Fu, Determination of effective diffusion coefficient and interfacial mass transfer coefficient of bovine serum albumin (BSA) adsorption into porous polyethylene membrane by microscope FTIR-mapping study. Chem. Eng. Sci., 59 (2004) 4569– 4574.
  99. L. Giorno, J.C. Zhang and E. Drioli, Study of mass transfer performance of naproxen acid and ester through a multiphase enzyme-loaded membrane system. J. Membr. Sci., 276 (2006) 59–67.
  100. A. W. Mohammad, N. Ali. Understanding the steric and charge contributions in NF membranes using increasing MWCO polyamide membranes. Desalination 47(2002) 205-212.
  101. J. Drewes, M. Reinhard and P. Fox, Comparing microfiltrationreverse osmosis and soil-aquifer treatment for indirect potable reuse. Water Res., 37 (2003) 3612–3621.
  102. B.B. Levine, K. Madrireddi, V. Lazarova, M.K. Stenstrom and M. Suffet, Treatment of trace organic compounds by membrane processes: at the lake arrowhead water reuse pilot plant. Water Sci. Technol., 40 (1999) 293–302.
  103. H. Ozaki and H. Li, Rejection of organic compounds by ultra-low pressure reverse osmosis membrane. Water Res., 36 (2002) 123–130.
  104. F. Bjorkling, S.E. Godtfredsen and O. Kirk, The future impact of industrial lipases. TIBTECH, 9 (1991) 360–363.
  105. M. Rucka, B. Turkiewicz, S.J. Zuk, A. Krystynowicz and E. Galas, Hydrolysis of plant oils by means of lipase from Rhizopus nigricans. Bioprocess Eng., 7 (1991) 133–135.
  106. R. Molinari, M. E. Santoro and E. Drioli, Study and comparison of two enzyme membrane reactors for fatty and glycerol production. EC Res., 33 (1994) 2591–2599.
  107. E. Ruckenstein and X. Wang, Lipase immobilized on hydrophobic porous polymer supports prepared by concentrated emulsion polymerization and their activity in the hydrolysis of triacylglycerides. Biotech. Bioeng., 42 (1993) 821–828.
  108. H. Stamatic, A. Xenakis, U. Menge and F.N. Kolisis, Kinetic study of lipase catalyzed esterification reactions in water-in-oil microemulsions. Biotech. Bioeng., 42 (1993) 931–937.
  109. B. Cambou and A.M. Klibanov, Comparison of different strategies for the lipase-catalyzed preparative resolution of racemic acids and alcohols: asymmetric hydrolysis, esterification, and transesterification. Biotech. Bioeng., 26 (1984) 1449– 1454.
  110. P.E. Sonnet, Enzymes for chiral synthesis. Chemtech., 18 (1998) 94–98.
  111. J.O. Rich, B.A. Bedell and J.S. Dordick,l Controlling enzymecatalyzed regioselectivity in sugar ester synthesis. Biotech. Bioeng., 45 (1995) 426–434.
  112. Y. Miyake, M. Ohkubo and M. Teramoto, Lipase-catalyzed hydrolysis of 2-naphtyl esters in biphasic system. Biotech. Bioeng., 38 (1991) 30–36.
  113. R. Molinari, M.E. Santoro and E. Drioli, Study and comparison of two enzyme membrane reactors for fatty acid and glycerol production, Ind. Eng. Chem. Res., 33 (1994) 2591–2599.
  114. L. Giorno, R. Molinari, M. Natoli and E. Drioli, Hydrolysis and regioselective transesterification catalyzed by immobilized lipases in membrane bioreactor. J. Membr. Sci., 125 (1997) 177–187.
  115. R.P.M. Guit, M. Kloosterman, G. W. Meindersma, M. Mayer and E.M. Meijer, Lipase kinetics: hydrolysis of triacetin by lipase from candida cylindracea in a hollow-fiber membrane reactor. Biotechnol. Bioeng., 38 (1991) 727–732.
  116. F. Carriere, K. Thirstup, E. Boel, R. Verger and L. Thim, Structure-function relationships in naturally occurring mutants of pancreatic lipase. Protein Eng., 7 (1994) 563–569.
  117. A.S. Michaels, Membranes, membrane processes, and their applications: needs, unsolved problems, and challenges of the 1990’s. Desalination, 77 (1990) 5–34.
  118. M. Tanigaki, M. Sakata and H. Wada, Hydrolysis of soybean oil by lipase with a bioreactor having two different membranes. J. Ferm. Bioeng., 75 (1993) 53–57.
  119. L. Giorno, R. Molinari, E. Drioli, D. Bianchi and P. Cesti, Performance of a biphasic organic/aqueous hollow fiber reactor using immobilized lipase. J. Chem. Tech. Biotechnol., 64 (1995) 345–352.