References

  1. D. Błędzka, J. Gromadzińska, W. Wąsowicz, Parabens: from environmental studies to human health, Environ. Int., 67 (2014) 27–42.
  2. A. Mehdinia, M. Bahrami, S. Mozaffari, A comparative study on different functionalized mesoporous silica nanomagnetic sorbents for efficient extraction of parabens, J. Iran. Chem. Soc., 12 (2015) 1543–1552.
  3. C. Haman, X. Dauchy, C. Rosin, Occurrence, fate and behavior of parabens in aquatic environments: a review, Water Res., 68 (2015) 1–11.
  4. Y.P. Chin, S. Mohamad, M. Radzi, B. Abas, Removal of parabens from aqueous solution using β-cyclodextrin cross-linked polymer, Int. J. Mol. Sci., 11 (2010) 3459–3471.
  5. A.K. Srivastav, D. Dubey, D. Chopra, R.S. Ray, Toxicological potential of parabens – a widely used preservative, Global J. Multidiscip. Stud., 4 (2014) 1–5.
  6. B. Quintana, I. Rodrı, R. Cela, Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatographyquadrupole-time-of-flight-mass, Water Res., 5 (2011) 6770–6780.
  7. M.J. Ahmed, S.K. Theydan, Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis, J. Taiwan Inst. Chem. Eng., 45 (2014) 219–226.
  8. H. Chen, C. Chiou, S. Chang, Comparison of methylparaben, ethylparaben and propylparaben adsorption onto magnetic nanoparticles with phenyl group, Powder Technol., 311 (2017) 426–431.
  9. W. Chou, Y. Huang, Electrochemical removal of indium ions from aqueous solution using iron electrodes, 172 (2009) 46–53.
  10. H.M. Inamisawa, K.M. Urashima, M.M. Inamisawa, N.A. Rai, T.O. Kutani, Determination of indium by graphite furnace atomic absorption spectrometry after coprecipitation with chitosan, Anal. Sci., 19 (2003) 401–404.
  11. H. Ma, Y. Lei, Q. Jia, W. Liao, L. Lin, An extraction study of gallium, indium, and zinc with mixtures of secoctylphenoxyacetic acid and primary amine N1923, Sep. Purif. Technol., 80 (2011) 351–355.
  12. R.D. Ambashta, M. Sillanpää, Water purification using magnetic assistance: a review, J. Hazard. Mater., 180 (2010) 38–49.
  13. D. Gryglik, J.S. Miller, The aqueous photosensitized degradation of butylparaben, Photochem. Photobiol. Sci., 8 (2009) 549–555.
  14. K. Soo Tay, N.A. Rahman, M.R.B. Abas, Kinetic studies of the degradation of parabens in aqueous solution by ozone oxidation, Environ. Chem. Lett., 4 (2009) 331–337.
  15. H.R. Andersen, E. Eriksson, Estrogenic personal care products in a greywater reuse system, Water Sci. Technol., 56 (2007) 45–49.
  16. I. Márquez-Sillero, E. Aguilera-Herrador, S. Cárdenas, M. Valcárcel, Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system., J. Chromatogr. A, 1217 (2010) 1–6.
  17. I. Ali, New generation adsorbents for water treatment, Chem. Rev., 112 (2012) 5073–5091.
  18. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A. Foul, A review: production of activated carbon from agricultural byproducts via conventional and microwave heating, J. Chem. Technol. Biotechnol., 88 (2013) 1183–1190.
  19. J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, M. Sa, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review, J. Environ. Manage., 85 (2007) 833–846.
  20. K.A. Krishnan, K.G. Sreejalekshmi, V. Vimexen, V.V Dev, Evaluation of adsorption properties of sulphurised activated carbon for the effective and economically viable removal of Zn(II) from aqueous solutions, Ecotoxicol. Environ. Saf., 124 (2016) 418–425.
  21. W. Liu, H. Yuan, Characterization and application of activated carbon regenerated by the combination of sulfuric acid pretreatment and thermal regeneration, Desal. Water Treat., 178 (2020) 83–93.
  22. M. Rezvani, G. Najafpou, M. Mohammadi, H. Zare, Amperometric biosensor for detection of triglyceride tributyrin based on zero point charge of activated carbon, Turk. J. Biol., 41 (2017) 268–277.
  23. R. Mailler, J. Gasperi, Y. Coquet, A. Buleté, E. Vulliet, S. Deshayes, S. Zedek, C. Mirande-Bret, V. Eudes, A. Bressy, Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale, Sci. Total Environ., 542 (2016) 983–996.
  24. S. Mohammad, D.E. Abulyazied, S.M. Ahmed, Application of polyaniline/activated carbon nanocomposites derived from different agriculture wastes for the removal of Pb(II) from aqueous media, Desal. Water Treat., 170 (2019) 199–210.
  25. S. Nethaji, A. Sivasamy, A.B. Mandal, Bioresource technology preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI), Bioresour. Technol., 134 (2013) 94–100.
  26. G. Karaçetin, S. Sivrikayaa, M. Imamoğlu, Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, J. Anal. Appl. Pyrolysis. 110 (2014) 270–276.
  27. L. Limousy, I. Ghouma, A. Ouederni, M. Jeguirim, Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone, Environ. Sci. Pollut. Res. Int., 24 (2016) 9993–10004.
  28. R.R. Karri, N.S. Jayakumar, J.N. Sahu, Modelling of fluidisedbed reactor by differential evolution optimization for phenol removal using coconut shells based activated carbon, J. Mol. Liq., 231 (2017) 249–262.
  29. M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, K. Oshida, Y. Tanaka, P. Dulyaseree, W. Wongwiriyapan, K. Takeuchi, Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material, J. Environ. Chem. Eng., 5 (2017) 1801–1808.
  30. A. Mullick, S. Moulik, S. Bhattacharjee, Removal of hexavalent chromium from aqueous solutions by low-cost rice husk-based activated carbon: kinetic and thermodynamic studies, Indian Chem. Eng., 1 (2017) 1–14.
  31. M. Kamaraj, P. Umamaheswari, Preparation and characterization of groundnut shell activated carbon as an efficient adsorbent for the removal of Methylene blue dye from aqueous solution with microbiostatic activity, J. Mater. Environ. Sci., 8 (2017) 2019–2025.
  32. F.T. Foroushani, H. Tavanai, F.A. Hosseini, Microporous and mesoporous materials an investigation on the effect of KMnO4 on the pore characteristics of pistachio nut shell based activated carbon, Microporous Mesoporous Mater., 230 (2016) 39–48.
  33. M. Adib, Z. Al-qodah, C.W.Z. Ngah, Agricultural biowaste materials as potential sustainable precursors used for activated carbon production: a review, Renewable Sustainable Energy Rev., 46 (2015) 218–235.
  34. K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti, V.C. Almeida, KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for Methylene blue removal, Chem. Eng. J., 286 (2016) 476–484.
  35. O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins, T.L. Silva, O.O.S. Júnior, J.V Visentainer, V.C. Almeida, NaOHactivated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies, Chem. Eng. J., 288 (2016) 778–788.
  36. A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A.S. Yamazaki, G.F.G. Bandoch, T. Asefa, J.V Visentainer, V.C. Almeida, Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies, Chem. Eng. J., 260 (2015) 291–299.
  37. K. Ojha, B. Kumar, A.K. Ganguli, Biomass derived graphenelike activated and non-activated porous carbon for advanced supercapacitors, J. Chem. Sci., 129 (2017) 397–404.
  38. L. Zhou, T. Huang, A. Yu, Three-dimensional flower-shaped activated porous carbon/sulfur composites as cathode materials for lithium–sulfur batteries, ACS Sustainable Chem. Eng., 2 (2014) 2442–2447.
  39. K. Le Van, T.T.L. Thi, Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor, Prog. Nat. Sci. Mater. Int., 24 (2014) 191–198.
  40. H. Rashidi Nodeh, H. Sereshti, Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media, RSC Adv., 6 (2016) 89953–89965.
  41. M.A. Kamboh, W.A. Wan Ibrahim, H. Rashidi Nodeh, M.M. Sanagi, S.T.H. Sherazi, The removal of organophosphorus pesticides from water using a new amino-substituted calixarene-based magnetic sporopollenin, New J. Chem., 40 (2016) 3130–3138.
  42. C. Song, H. Hu, H. Ao, Y. Wu, C. Wu, Removal of parabens and their chlorinated by-products by periphyton: influence of light and temperature, Environ. Sci. Pollut. Res., 24 (2017) 5566–5575.
  43. J.-C.E. Yang, H. Lan, X.-Q. Lin, B. Yuan, M.-L. Fu, Synthetic conditions-regulated catalytic oxone efficacy of MnOx/SBA-15 towards butyl paraben (BPB) removal under heterogeneous conditions, Chem. Eng. J., 289 (2016) 296–305.
  44. M. Forte, L. Mita, R. Perrone, S. Rossi, M. Argirò, D.G. Mita, M. Guida, M. Portaccio, T. Godievargova, Y. Ivanov, Removal of methylparaben from synthetic aqueous solutions using polyacrylonitrile beads: kinetic and equilibrium studies, Environ. Sci. Pollut. Res., 24 (2017) 1270–1282.
  45. X. You, C. Piao, L. Chen, Preparation of a magnetic molecularly imprinted polymer by atom‐transfer radical polymerization for the extraction of parabens from fruit juices, J. Sep. Sci., 39 (2016) 2831–2838.
  46. K. Singh, D.H. Lataye, K.L. Wasewar, Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: kinetic, equilibrium and thermodynamic study, J. Fluorine Chem., 194 (2017) 23–32.
  47. M.E. Bidhendia, M.A. Gabris, V. Goudarzi, S. Abedyni, B.H. Juma, H. Sereshtib, M.A. Kamboh, M. Soylak, H.R. Rashidi Nodeh, Removal of some heavy metal ions from water using novel adsorbent based on iron oxide-doped sol–gel organicinorganic hybrid nanocomposite: equilibrium and kinetic studies, Desal. Water Treat., 147 (2019) 173–182.
  48. H. Rashidi Nodeh, H. Sereshti, E. Zamiri Afsharian, N. Nouri, Enhanced removal of phosphate and nitrate ions from aqueous media using nanosized lanthanum hydrous doped on magnetic graphene nanocomposite, J. Environ. Manage., 197 (2017). 265–274.
  49. S.S. Tahir, N. Rauf, Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay, Chemosphere, 63 (2006) 1842–1848.