References

  1. T. Distefano, S. Kelly, Are we in deep water? Water scarcity and its limits to economic growth, Ecol. Econ., 142 (2017) 130–147.
  2. H. Nanda, Reverse osmosis-the evolution which never stops, Filtr. Sep., 55 (2018) 12–13.
  3. IDA Desalination Yearbook 2018–2019.
  4. M.A. Abdelkareem, M.E.H. Assad, E.T. Sayed, B. Soudan, Recent progress in the use of renewable energy sources to power water desalination plants, Desalination, 435 (2018) 97–113.
  5. S. Chaudhry, An Overview of Industrial Desalination Technologies, Proceedings of the ASME Industrial Demineralization (Desalination): Best Practices & Future Directions Workshop, Washington, DC, 2013.
  6. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  7. WateReuse Association Desalination Committee, Seawater Desalination Costs White Paper, Water Reuse Association (WRA), Alexandria, VA, USA, 2012. Available at: https:// watereuse.org/wp-content/uploads/2015/10/WateReuse_Desal_ Cost_White_Paper.pdf.
  8. M. Li, Reducing specific energy consumption in reverse osmosis (RO) water desalination: an analysis from first principles, Desalination, 276 (2011) 128–135.
  9. B. van der Bruggen, Desalination by distillation and by reverse osmosis-trends towards the future, Membr. Technol., 2003 (2003) 6–9.
  10. M. Mandil, H. Farag, M. Naim, M. Attia, Feed salinity and costeffectiveness of energy recovery in reverse osmosis desalination, Desalination, 120 (1998) 89–94.
  11. E. Kadaj, R. Bosleman, Chapter 11 – Energy Recovery Devices in Membrane Desalination Processes, V.G. Gude, Ed., Renewable Energy Powered Desalination Handbook: Application and Thermodynamics, Elsevier, Netherlands, 2018, pp. 415–444.
  12. A.M. Farooque, A.T.M. Jamaluddin, A.R. Al-Reweli, P.A.M. Jalaluddin, S.M. Al-Marwani, A.S.A. Al-Mobayed, A.H. Qasim, Comparative Study of Various Energy Recovery Devices used in SWRO Process, Saline Water Desalination Research Institute, Saline Water Conversion Corporation (SWCC), Saudi Arabia, 2004.
  13. O.M. Al-Hawaj, The work exchanger for reverse osmosis plants, Desalination, 157 (2003) 23–27.
  14. E. Oklejas Jr., W.F. Pergande, Integration of advanced highpressure pumps and energy recovery equipment yields reduced capital and operating costs of seawater RO systems, Desalination, 127 (2000) 181–188.
  15. R.L. Stover, J. Martin, Reverse osmosis and osmotic power generation with isobaric energy recovery, Desal. Water Treat., 15 (2010) 267–270.
  16. A. Cooley, Turbocharged cost savings in RO systems, World Pumps, 2016 (2016) 36–41.
  17. A. Bennett, Advances in desalination energy recovery, World Pumps, 2015 (2015) 30–34.
  18. R.L. Stover, Retrofits to improve desalination plants, Desal. Water Treat., 13 (2010) 33–41.
  19. R. Stover, Energy Recovery Devices in Desalination Applications, Proceedings of the International Water Association (IWA) North American Membrane Research Conference, Amherst, MA, USA, 2008, pp. 10–13.
  20. Energy Recovery Inc., The Availability Advantage of Reliable Energy Recovery Technologies, Houston, USA, 2011.
  21. R.L. Stover, Development of a fourth generation energy recovery device, A ‘CTO’s notebook’, Desalination, 165 (2004) 313–321.
  22. K. Liu, J. Deng, F. Ye, Visualization of flow structures in a rotary type energy recovery device by PIV experiments, Desalination, 433 (2018) 33–40.
  23. L.J. Hauge, New XPR Technology Expands ERD Market Potential, Desalination and Water Reuse, East Grinstead, UK, 2011, pp. 32–35.
  24. SALINO Pressure Center for RO Seawater Desalination, World Pumps, 2012, p. 8.
  25. Compact High Energy System for RO Plant, World Pumps, 2013, pp. 27–28.
  26. Salinnova Inc. Seawater Desalination Module SALINO Pressure Center Type Series Booklet, Salinnova Inc., Frankenthal, Germany, 2017. Available at: https://www.salinnova.com/wpcontent/ uploads/salinnova/salino/EN-TSB%20SALINO%20 250%20500-Ref1.pdf.
  27. Danfoss Inc., Nordborg, Syddanmark Denmark. Available at: http://high-pressurepumps.danfoss.cn/products/energyrecovery- devices/isave-erd/#/.
  28. R. Stover, J. Martin, Titan PX-1200 energy recovery device — test results from the Inima Los Cabos, Mexico, seawater RO facility, Desal. Water Treat., 3 (2009) 179–182.
  29. I.B. Cameron, R.B. Clemente, SWRO with ERI’s PX pressure exchanger device — a global survey, Desalination, 221 (2008) 136–142.
  30. S. Mambretti, E. Orsi, S. Gagliardi, R. Stover, Behavior of energy recovery devices in unsteady flow conditions and application in the modelling of the Hamma desalination plant, Desalination, 238 (2009) 233–245.
  31. E.S. Mohamed, G. Papadakis, Design, simulation and economic analysis of a stand-alone reverse osmosis desalination unit powered by wind turbines and photovoltaics, Desalination, 164 (2004) 87–97.
  32. P. Geisler, F.U. Hahnenstein, W. Krumm, T. Peters, Pressure exchange system for energy recovery in reverse osmosis plants, Desalination, 122 (1999) 151–156.
  33. P. Geisler, W. Krumm, T. Peters, Optimization of the energy demand of reverse osmosis with a pressure-exchange system, Desalination, 125 (1999) 167–172.
  34. V. Pikalov, S. Arrieta, A.T. Jones, J. Mamo, Demonstration of an energy recovery device well suited for modular communitybased seawater desalination systems: result of Danfoss iSAVE 21 testing, Desal. Water Treat., 51 (2013) 4694–4698.
  35. Y. Wang, S. Wang, S. Xu, Investigations on characteristics and efficiency of a positive displacement energy recovery unit, Desalination, 177 (2005) 179–185.
  36. S. Shumway, Linear Spool Valve Device for Work Exchanger System, US Patent, 1998.
  37. S. Bross, W. Kochanowski, SWRO core hydraulic system: extension of the SalTec® DT to higher flows and lower energy consumption, Desalination, 203 (2007) 160–167.
  38. S. Bross, W. Kochanowski, SWRO core hydraulic module — the right concept decides in terms of energy consumption and reliability Part II. Advanced pressure exchanger design, Desalination, 165 (2004) 351–361.
  39. B. Peñate, J. de la Fuente, M. Barreto, Operation of the RO Kinetic® energy recovery system: description and real experiences, Desalination, 252 (2010) 179–185.
  40. Aqualyng Inc. Innovations in Global Desalination, Aqualyng Corporate Brochure, Dubai, United Arab Emirates, 2010. Available at: http://www.aqualyng.com/en /Downloads/ Downloads.aspx.
  41. L. Drabløs, Aqualyng™ — a new system for SWRO with pressure recuperation, Desalination, 139 (2001) 149–153.
  42. M. Thomson, M.S. Miranda, D. Infield, A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range, Desalination, 153 (2003) 229–236.
  43. B. Schneider, Selection, operation and control of a work exchanger energy recovery system based on the Singapore project, Desalination, 184 (2005) 197–210.
  44. S. Bross, W. Kochanowski, N. El Maraghy, SWRO-core-hydraulicsystem: first field test experience, Desalination, 184 (2005) 223–232.
  45. E.S. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis, An experimental comparative study of the technical and economic performance of a small reverse osmosis desalination system equipped with a hydraulic energy recovery unit, Desalination, 194 (2006) 239–250.
  46. S. Veerapaneni, B. Klayman, S. Wang, D. Carlson, K. Ozekin, Overview of current practices in desalination facilities, IDA J. Desal. Water Reuse, 3 (2011) 22–29.
  47. B. Liberman, The Importance of Energy Recovery Devices in Reverse Osmosis Desalination, IDE Technologies Ltd., Kadima, Israel, 2003, pp. 1–9.
  48. S.A. Tyler Nading, Selecting the Best Energy Recovery Device at RO Plants, CH2M HILL International, Inc., Honolulu, HI, USA, 2013.
  49. N.M. Eshoul, B. Agnew, M.A. Al-Weshahi, M.S. Atab, Exergy analysis of a two-pass reverse osmosis (RO) desalination unit with and without an energy recovery turbine (ERT) and pressure exchanger (PX), Energies, 8 (2015) 6910–6925.
  50. S. Choi, Reduction of energy consumption in seawater reverse osmosis desalination pilot plant by using energy recovery devices, Desal. Water Treat., 51 (2013) 766–771.
  51. B.A. Qureshi, S.M. Zubair, Energy-exergy analysis of seawater reverse osmosis plants, Desalination, 385 (2016) 138–147.
  52. R.L. Stover, Seawater reverse osmosis with isobaric energy recovery devices, Desalination, 203 (2007) 168–175.
  53. E. Dimitriou, E.S. Mohamed, C. Karavas, G. Papadakis, Experimental comparison of the performance of two reverse osmosis desalination units equipped with different energy recovery devices, Desal. Water Treat., 55 (2015) 3019–3026.
  54. K. Jeong, Y.G. Lee, S.J. Ki, J.H. Kim, Modeling seawater reverse osmosis system under degradation conditions of membrane performance: assessment of isobaric energy recovery devices and feed pressure control benefits, Desal. Water Treat., 57 (2016) 20210–20218.
  55. S.A. Urrea, F.D. Reyes, B. Peñate Suárez, J.A.de la Fuente Bencomo, Technical review, evaluation and efficiency of energy recovery devices installed in the Canary Islands desalination plants, Desalination, 450 (2019) 54–63.
  56. A. Valbjørn, ERD for small SWRO plants, Desalination, 248 (2009) 636–641.
  57. A. Drak, M. Adato, Energy recovery consideration in brackish water desalination, Desalination, 339 (2014) 34–39.
  58. J.P. MacHarg, Retro-fitting existing SWRO systems with a new energy recovery device, Desalination, 153 (2003) 253–264.
  59. T. Bozbura, Comparative cost analysis of pressure exchanger (PX) and turbine type energy recovery devices at seawater reverse osmosis (SWRO) plants, J. Environ. Prot. Ecol., 12 (2011) 1186–1194.
  60. S. Shaligram, Brackish water: energy, costs and the use of energy recovery devices, Filtr. Sep., 48 (2011) 28–30.
  61. J. Marcos, J. Morgade, Las Palmas’ ERD experience, Desal. Water Treat., 55 (2015) 3034–3039.
  62. W.T. Andrews, W.F. Pergande, G.S. McTaggart, Energy performance enhancements of a 950 m3/d seawater reverse osmosis unit in Grand Cayman, Desalination, 135 (2001) 195–204.
  63. C. Lopez-Monllor, S. Rodríguez-Gómez, R. Iglesias-Esteban, I. del Río-Marrero, J.J. Rodríguez-González, R. Jiménez-Egea, R. Koehn, Analysis of the influence of the configuration in ERD retrofit in two-stage SWRO trains, J. Membr. Sci., 503 (2016) 116–123.
  64. M.A. Jamil, B.A. Qureshi, S.M. Zubair, Exergo-economic analysis of a seawater reverse osmosis desalination plant with various retrofit options, Desalination, 401 (2017) 88–98.
  65. B. Peñate, L. García-Rodríguez, Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): technical and thermoeconomic assessment, Energy, 36 (2011) 613–626.
  66. A. Goto, M. Shinoda, T. Takemura, Mixing Control in an Isobaric Energy Recovery Device of Seawater Reverse Osmosis Desalination System, ASME 2017 Fluids Engineering Division Summer Meeting, American Society of Mechanical Engineers, Waikoloa, Hawaii, USA, 2017, pp. V01BT8A003–V01BT08A.
  67. L.M. Wu, Y. Wang, E.L. Xu, J.N. Wu, S.C. Xu, Employing groove-textured surface to improve operational performance of rotary energy recovery device in membrane desalination system, Desalination, 369 (2015) 91–96.
  68. Y. Wang, Y. Duan, J. Zhou, S. Xu, S. Wang, Introducing prepressurization/ depressurization grooves to diminish flow fluctuations of a rotary energy recovery device: numerical simulation and validating experiment, Desalination, 413 (2017) 1–9.
  69. E. Xu, X. Jiang, Z. Duan, L. Xie, S. Wang, Effect of rectangular damping groove on flow fluctuation and pressure pulsation for rotary energy recovery device through CFD simulation, Desal. Water Treat., 115 (2018) 97–105.
  70. E. Xu, Y. Wang, L. Wu, S. Xu, Y. Wang, S. Wang, Computational fluid dynamics simulation of brine–seawater mixing in a rotary energy recovery device, Ind. Eng. Chem. Res., 53 (2014) 18304–18310.
  71. E. Xu, Y. Wang, J. Zhou, S. Xu, S. Wang, Theoretical investigations on rotor speed of the self-driven rotary energy recovery device through CFD simulation, Desalination, 398 (2016) 189–197.
  72. H. Bie, Y. Jia, W. An, C. Li, J. Zhu, CFD Simulation of the effects of extended angle on the mixing performances of rotary pressure exchanger, Chem. Eng., 61 (2017) 835–840.
  73. N. Liu, Z. Liu, Y. Li, L. Sang, Studies on leakage characteristics and efficiency of a fully-rotary valve energy recovery device by CFD simulation, Desalination, 415 (2017) 40–48.
  74. N. Liu, Z. Liu, Y. Li, L. Sang, Development and experimental studies on a fully-rotary valve energy recovery device for SWRO desalination system, Desalination, 397 (2016) 67–74.
  75. N. Liu, Z. Liu, Y. Li, L. Sang, An optimization study on the seal structure of fully-rotary valve energy recovery device by CFD, Desalination, 459 (2019) 46–58.
  76. O. Al-Hawaj, Theoretical analysis of sliding vane energy recovery device, Desal. Water Treat., 36 (2011) 354–362.
  77. F. Yin, S. Nie, H. Ji, F. Lou, Numerical study of structure parameters on energy transfer and flow characteristics of integrated energy recovery and pressure boost device, Desal. Water Treat., 131 (2018) 141–154.
  78. K. Liu, J. Deng, B. Yang, Research on Flow Field of a Fixed Duct in a Rotary Energy Recovery Device, ASME 2017 Fluids Engineering Division Summer Meeting, American Society of Mechanical Engineers, Vail, Colorado, USA, 2017, pp. V01BT8A001–V01BT08A.
  79. K. Liu, J. Deng, F. Ye, Numerical simulation of flow structures in a rotary type energy recovery device, Desalination, 449 (2019) 101–110.
  80. D. Song, Y. Wang, S. Xu, Z. Wang, H. Liu, S. Wang, Control logic and strategy for emergency condition of piston-type energy recovery device, Desalination, 348 (2014) 1–7.
  81. D. Song, Y. Wang, S. Xu, J. Gao, Y. Ren, S. Wang, Analysis, experiment and application of a power-saving actuator applied in the piston-type energy recovery device, Desalination, 361 (2015) 65–71.
  82. J. Zhou, Y. Wang, Z. Feng, Z. He, S. Xu, Effective modifications of reciprocating-switcher energy recovery device by adopting pilot valve plates to decrease the switching load and fluid fluctuations, Desalination, 462 (2019) 39–47.
  83. F. Ye, J. Deng, Z. Cao, B. Yang, Study of efficiency in a sliding vane pressure exchanger, Chem. Eng. Trans., 61 (2017) 841–846.
  84. J. Zhou, Y. Wang, Y. Duan, J. Tian, S. Xu, Capacity flexibility evaluation of a reciprocating-switcher energy recovery device for SWRO desalination system, Desalination, 416 (2017) 45–53.
  85. A. Bermudez-Contreras, M. Thomson, Modified operation of a small scale energy recovery device for seawater reverse osmosis, Desal. Water Treat., 13 (2010) 195–202.
  86. Z. Wang, Y. Wang, Y. Zhang, B. Qi, S. Xu, S. Wang, Pilot tests of fluid-switcher energy recovery device for seawater reverse osmosis desalination system, Desal. Water Treat., 48 (2012) 310–314.
  87. X. Wang, Y. Wang, J. Wang, S. Xu, Y. Wang, S. Wang, Comparative study on stand-alone and parallel operating schemes of energy recovery device for SWRO system, Desalination, 254 (2010) 170–174.
  88. B. Qi, Y. Wang, Z. Wang, Y. Zhang, S. Xu, S. Wang, Theoretical investigation on internal leakage and its effect on the efficiency of fluid switcher-energy recovery device for reverse osmosis desalting plant, Chin. J. Chem. Eng., 21 (2013) 1216–1223.
  89. Y. Wang, Y. Ren, J. Zhou, E. Xu, S. Xu, Functionality test of an innovative single-cylinder energy recovery device for SWRO desalination system, Desalination, 388 (2016) 22–28.
  90. A.A. Tofigh, G.D. Najafpour, Technical and economical evaluation of desalination processes for potable water from seawater, Middle-East J. Sci. Res., 12 (2012) 42–45.
  91. B. Sauvet-Goichon, Ashkelon desalination plant-a successful challenge, Desalination, 203 (2007) 75–81.
  92. V. García Molina, M. Taub, L. Yohay, M. Busch, Long term membrane process and performance in Ashkelon seawater reverse osmosis desalination plant, Desal. Water Treat., 31 (2011) 115–120.
  93. M. Taub, The World’s Largest SWRO Desalination Plant 15 Months of Operational Experience, IDA World Congress Maspalomas, Gran Canaria–Spain, 2007.
  94. S.A.N. Zealand, Perth Seawater Desalination Plant, SUEZ: Rhodes NSW, Australia. Available at: http://www.degremont. com.au/media/general/Perth_Seawater_Desalination_Plant _1.pdf (accessed 9/24/2018).
  95. D.W. Solutions, Reverse osmosis: membranes help beat the drought, Filtr. Sep., 46 (2009) 23–24.
  96. M.A. Sanz, C. Miguel, R. Arbos, M. Munoz, J. Mesa, Two Years in Barcelona with Tap Water from SWRO Llobregat Plant, IDA World Congress, Perth, Australia, 2011.
  97. M. Faigon, Y. Egozy, D. Hefer, M. Ilevicky, Y. Pinhas, Hadera desalination plant two years of operation, Desal. Water Treat., 51 (2013) 132–139.
  98. J. Kim, S. Hong, A novel single-pass reverse osmosis configuration for high-purity water production and low energy consumption in seawater desalination, Desalination, 429 (2018) 142–154.
  99. J. Evans Robert, Sustainable supply, Civ. Eng., 81 (2011) 50–57.
  100. I. El Saliby, Y. Okour, H.K. Shon, J. Kandasamy, I.S. Kim, Desalination plants in Australia, review and facts, Desalination, 247 (2009) 1–14.
  101. Global Water Award, Global Water Intelligence, Oxford, UK, 2012. Available at: https://globalwaterawards. com/2012-winn ers/#DesalinationPlantoftheYear.
  102. B. Blanco, ERI helps make fresh water production more affordable, Membr. Technol., 2010 (2010) 8.
  103. C. Hurn, T. Hagedorn, Tuaspring Sea Water Desalination with CCPP in Singapore: An Example for Sustainable Power Generation, PowerGen Asia Bangkok, 2012.
  104. F.C. Looi, Assessment of Future Water Resources Sustainability Based on 4 National Taps of Singapore.
  105. M. Faigon, Success behind advanced SWRO desalination plant, Filtr. Sep., 53 (2016) 29–31.
  106. A. Efraty, Closed circuit desalination series no-6: conventional RO compared with the conceptually different new closed circuit desalination technology, Desal. Water Treat., 41 (2012) 279–295.
  107. E. Lapuente, Full cost in desalination: a case study of the Segura River Basin, Desalination, 300 (2012) 40–45.
  108. acuaMed Inc. Acuamed Annual Report, acuaMed Inc., Madrid, Spain, 2013. Available at: http://www.acuamed.es/ media/memorias/eng/report13.pdf.
  109. V. Martínez-Alvarez, M.J. González-Ortega, B. Martin-Gorriz, M. Soto-García, J.F. Maestre-Valero, Seawater Desalination for Crop Irrigation—Current Status and Perspectives, Emerging Technologies for Sustainable Desalination Handbook, Elsevier, 2018, pp. 461–492.
  110. IDA Desalination Yearbook 2016–2017, Global Water Intelligence, Oxford, UK.
  111. N. Voutchkov, CO2 neutral seawater desalination, Environ. Sci. Eng., 22 (2009) 22–24.
  112. Global Water Award, Global Water Intelligence, Oxford, UK, 2017. Available at: https://globalwaterawards.com/2017-industrial-desalination-plant-of-the-year/.