References
  -  T. Distefano, S. Kelly, Are we in deep water? Water scarcity
    and its limits to economic growth, Ecol. Econ., 142 (2017)
    130–147. 
-  H. Nanda, Reverse osmosis-the evolution which never stops,
    Filtr. Sep., 55 (2018) 12–13. 
-  IDA Desalination Yearbook 2018–2019. 
-  M.A. Abdelkareem, M.E.H. Assad, E.T. Sayed, B. Soudan, Recent
    progress in the use of renewable energy sources to power water
    desalination plants, Desalination, 435 (2018) 97–113. 
-  S. Chaudhry, An Overview of Industrial Desalination
    Technologies, Proceedings of the ASME Industrial
    Demineralization (Desalination): Best Practices & Future
    Directions Workshop, Washington, DC, 2013. 
-  M. Elimelech, W.A. Phillip, The future of seawater desalination:
    energy, technology, and the environment, Science, 333 (2011)
    712–717. 
-  WateReuse Association Desalination Committee, Seawater
    Desalination Costs White Paper, Water Reuse Association
    (WRA), Alexandria, VA, USA, 2012. Available at: https://
    watereuse.org/wp-content/uploads/2015/10/WateReuse_Desal_
    Cost_White_Paper.pdf. 
-  M. Li, Reducing specific energy consumption in reverse osmosis
    (RO) water desalination: an analysis from first principles,
    Desalination, 276 (2011) 128–135. 
-  B. van der Bruggen, Desalination by distillation and by reverse
    osmosis-trends towards the future, Membr. Technol., 2003
    (2003) 6–9. 
-  M. Mandil, H. Farag, M. Naim, M. Attia, Feed salinity and costeffectiveness
    of energy recovery in reverse osmosis desalination,
    Desalination, 120 (1998) 89–94. 
-  E. Kadaj, R. Bosleman, Chapter 11 – Energy Recovery Devices in
    Membrane Desalination Processes, V.G. Gude, Ed., Renewable
    Energy Powered Desalination Handbook: Application and
    Thermodynamics, Elsevier, Netherlands, 2018, pp. 415–444. 
-  A.M. Farooque, A.T.M. Jamaluddin, A.R. Al-Reweli, P.A.M.
    Jalaluddin, S.M. Al-Marwani, A.S.A. Al-Mobayed, A.H. Qasim,
    Comparative Study of Various Energy Recovery Devices used
    in SWRO Process, Saline Water Desalination Research Institute,
    Saline Water Conversion Corporation (SWCC), Saudi Arabia,
    2004. 
-  O.M. Al-Hawaj, The work exchanger for reverse osmosis plants,
    Desalination, 157 (2003) 23–27. 
-  E. Oklejas Jr., W.F. Pergande, Integration of advanced highpressure
    pumps and energy recovery equipment yields
    reduced capital and operating costs of seawater RO systems,
    Desalination, 127 (2000) 181–188. 
-  R.L. Stover, J. Martin, Reverse osmosis and osmotic power
    generation with isobaric energy recovery, Desal. Water Treat.,
    15 (2010) 267–270. 
-  A. Cooley, Turbocharged cost savings in RO systems, World
    Pumps, 2016 (2016) 36–41. 
-  A. Bennett, Advances in desalination energy recovery, World
    Pumps, 2015 (2015) 30–34. 
-  R.L. Stover, Retrofits to improve desalination plants, Desal.
    Water Treat., 13 (2010) 33–41. 
-  R. Stover, Energy Recovery Devices in Desalination Applications,
    Proceedings of the International Water Association (IWA)
    North American Membrane Research Conference, Amherst,
    MA, USA, 2008, pp. 10–13. 
-  Energy Recovery Inc., The Availability Advantage of Reliable
    Energy Recovery Technologies, Houston, USA, 2011. 
-  R.L. Stover, Development of a fourth generation energy
    recovery device, A ‘CTO’s notebook’, Desalination, 165 (2004)
    313–321. 
-  K. Liu, J. Deng, F. Ye, Visualization of flow structures in a rotary
    type energy recovery device by PIV experiments, Desalination,
    433 (2018) 33–40. 
-  L.J. Hauge, New XPR Technology Expands ERD Market
    Potential, Desalination and Water Reuse, East Grinstead, UK,
    2011, pp. 32–35. 
-  SALINO Pressure Center for RO Seawater Desalination, World
    Pumps, 2012, p. 8. 
-  Compact High Energy System for RO Plant, World Pumps,
    2013, pp. 27–28. 
-  Salinnova Inc. Seawater Desalination Module SALINO Pressure
    Center Type Series Booklet, Salinnova Inc., Frankenthal,
    Germany, 2017. Available at: https://www.salinnova.com/wpcontent/
    uploads/salinnova/salino/EN-TSB%20SALINO%20
    250%20500-Ref1.pdf. 
-  Danfoss Inc., Nordborg, Syddanmark Denmark. Available
    at: http://high-pressurepumps.danfoss.cn/products/energyrecovery-
    devices/isave-erd/#/. 
-  R. Stover, J. Martin, Titan PX-1200 energy recovery device —
    test results from the Inima Los Cabos, Mexico, seawater RO
    facility, Desal. Water Treat., 3 (2009) 179–182. 
-  I.B. Cameron, R.B. Clemente, SWRO with ERI’s PX pressure
    exchanger device — a global survey, Desalination, 221 (2008)
    136–142. 
-  S. Mambretti, E. Orsi, S. Gagliardi, R. Stover, Behavior of energy
    recovery devices in unsteady flow conditions and application in
    the modelling of the Hamma desalination plant, Desalination,
    238 (2009) 233–245. 
-  E.S. Mohamed, G. Papadakis, Design, simulation and economic
    analysis of a stand-alone reverse osmosis desalination unit
    powered by wind turbines and photovoltaics, Desalination,
    164 (2004) 87–97. 
-  P. Geisler, F.U. Hahnenstein, W. Krumm, T. Peters, Pressure
    exchange system for energy recovery in reverse osmosis plants,
    Desalination, 122 (1999) 151–156. 
-  P. Geisler, W. Krumm, T. Peters, Optimization of the energy
    demand of reverse osmosis with a pressure-exchange system,
    Desalination, 125 (1999) 167–172. 
-  V. Pikalov, S. Arrieta, A.T. Jones, J. Mamo, Demonstration of an
    energy recovery device well suited for modular communitybased
    seawater desalination systems: result of Danfoss iSAVE
    21 testing, Desal. Water Treat., 51 (2013) 4694–4698. 
-  Y. Wang, S. Wang, S. Xu, Investigations on characteristics and
    efficiency of a positive displacement energy recovery unit,
    Desalination, 177 (2005) 179–185. 
-  S. Shumway, Linear Spool Valve Device for Work Exchanger
    System, US Patent, 1998. 
-  S. Bross, W. Kochanowski, SWRO core hydraulic system:
    extension of the SalTec® DT to higher flows and lower energy
    consumption, Desalination, 203 (2007) 160–167. 
-  S. Bross, W. Kochanowski, SWRO core hydraulic module
    — the right concept decides in terms of energy consumption
    and reliability Part II. Advanced pressure exchanger design,
    Desalination, 165 (2004) 351–361. 
-  B. Peñate, J. de la Fuente, M. Barreto, Operation of the
    RO Kinetic® energy recovery system: description and real
    experiences, Desalination, 252 (2010) 179–185. 
-  Aqualyng Inc. Innovations in Global Desalination, Aqualyng
    Corporate Brochure, Dubai, United Arab Emirates, 2010.
    Available at: http://www.aqualyng.com/en /Downloads/
    Downloads.aspx. 
-  L. Drabløs, Aqualyng™ — a new system for SWRO with
    pressure recuperation, Desalination, 139 (2001) 149–153. 
-  M. Thomson, M.S. Miranda, D. Infield, A small-scale seawater
    reverse-osmosis system with excellent energy efficiency over a
    wide operating range, Desalination, 153 (2003) 229–236. 
-  B. Schneider, Selection, operation and control of a work
    exchanger energy recovery system based on the Singapore
    project, Desalination, 184 (2005) 197–210. 
-  S. Bross, W. Kochanowski, N. El Maraghy, SWRO-core-hydraulicsystem:
    first field test experience, Desalination, 184 (2005)
    223–232. 
-  E.S. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis,
    An experimental comparative study of the technical and
    economic performance of a small reverse osmosis desalination
    system equipped with a hydraulic energy recovery unit,
    Desalination, 194 (2006) 239–250. 
-  S. Veerapaneni, B. Klayman, S. Wang, D. Carlson, K. Ozekin,
    Overview of current practices in desalination facilities, IDA J.
    Desal. Water Reuse, 3 (2011) 22–29. 
-  B. Liberman, The Importance of Energy Recovery Devices in
    Reverse Osmosis Desalination, IDE Technologies Ltd., Kadima,
    Israel, 2003, pp. 1–9. 
-  S.A. Tyler Nading, Selecting the Best Energy Recovery Device
    at RO Plants, CH2M HILL International, Inc., Honolulu, HI,
    USA, 2013. 
-  N.M. Eshoul, B. Agnew, M.A. Al-Weshahi, M.S. Atab, Exergy
    analysis of a two-pass reverse osmosis (RO) desalination
    unit with and without an energy recovery turbine (ERT) and
    pressure exchanger (PX), Energies, 8 (2015) 6910–6925. 
-  S. Choi, Reduction of energy consumption in seawater reverse
    osmosis desalination pilot plant by using energy recovery
    devices, Desal. Water Treat., 51 (2013) 766–771. 
-  B.A. Qureshi, S.M. Zubair, Energy-exergy analysis of seawater
    reverse osmosis plants, Desalination, 385 (2016) 138–147. 
-  R.L. Stover, Seawater reverse osmosis with isobaric energy
    recovery devices, Desalination, 203 (2007) 168–175. 
-  E. Dimitriou, E.S. Mohamed, C. Karavas, G. Papadakis,
    Experimental comparison of the performance of two
    reverse osmosis desalination units equipped with different
    energy recovery devices, Desal. Water Treat., 55 (2015)
    3019–3026. 
-  K. Jeong, Y.G. Lee, S.J. Ki, J.H. Kim, Modeling seawater reverse
    osmosis system under degradation conditions of membrane
    performance: assessment of isobaric energy recovery devices
    and feed pressure control benefits, Desal. Water Treat., 57 (2016)
    20210–20218. 
-  S.A. Urrea, F.D. Reyes, B. Peñate Suárez, J.A.de la Fuente
    Bencomo, Technical review, evaluation and efficiency of energy
    recovery devices installed in the Canary Islands desalination
    plants, Desalination, 450 (2019) 54–63. 
-  A. Valbjørn, ERD for small SWRO plants, Desalination,
    248 (2009) 636–641. 
-  A. Drak, M. Adato, Energy recovery consideration in brackish
    water desalination, Desalination, 339 (2014) 34–39. 
-  J.P. MacHarg, Retro-fitting existing SWRO systems with a
    new energy recovery device, Desalination, 153 (2003) 253–264. 
-  T. Bozbura, Comparative cost analysis of pressure exchanger
    (PX) and turbine type energy recovery devices at seawater
    reverse osmosis (SWRO) plants, J. Environ. Prot. Ecol., 12 (2011)
    1186–1194. 
-  S. Shaligram, Brackish water: energy, costs and the use of energy
    recovery devices, Filtr. Sep., 48 (2011) 28–30. 
-  J. Marcos, J. Morgade, Las Palmas’ ERD experience, Desal.
    Water Treat., 55 (2015) 3034–3039. 
-  W.T. Andrews, W.F. Pergande, G.S. McTaggart, Energy
    performance enhancements of a 950 m3/d seawater reverse
    osmosis unit in Grand Cayman, Desalination, 135 (2001)
    195–204. 
-  C. Lopez-Monllor, S. Rodríguez-Gómez, R. Iglesias-Esteban,
    I. del Río-Marrero, J.J. Rodríguez-González, R. Jiménez-Egea,
    R. Koehn, Analysis of the influence of the configuration in ERD
    retrofit in two-stage SWRO trains, J. Membr. Sci., 503 (2016)
    116–123. 
-  M.A. Jamil, B.A. Qureshi, S.M. Zubair, Exergo-economic
    analysis of a seawater reverse osmosis desalination plant with
    various retrofit options, Desalination, 401 (2017) 88–98. 
-  B. Peñate, L. García-Rodríguez, Energy optimisation of existing
    SWRO (seawater reverse osmosis) plants with ERT (energy
    recovery turbines): technical and thermoeconomic assessment,
    Energy, 36 (2011) 613–626. 
-  A. Goto, M. Shinoda, T. Takemura, Mixing Control in an
    Isobaric Energy Recovery Device of Seawater Reverse Osmosis
    Desalination System, ASME 2017 Fluids Engineering Division
    Summer Meeting, American Society of Mechanical Engineers,
    Waikoloa, Hawaii, USA, 2017, pp. V01BT8A003–V01BT08A. 
-  L.M. Wu, Y. Wang, E.L. Xu, J.N. Wu, S.C. Xu, Employing
    groove-textured surface to improve operational performance
    of rotary energy recovery device in membrane desalination
    system, Desalination, 369 (2015) 91–96. 
-  Y. Wang, Y. Duan, J. Zhou, S. Xu, S. Wang, Introducing prepressurization/
    depressurization grooves to diminish flow
    fluctuations of a rotary energy recovery device: numerical
    simulation and validating experiment, Desalination, 413 (2017)
    1–9. 
-  E. Xu, X. Jiang, Z. Duan, L. Xie, S. Wang, Effect of rectangular
    damping groove on flow fluctuation and pressure pulsation for
    rotary energy recovery device through CFD simulation, Desal.
    Water Treat., 115 (2018) 97–105. 
-  E. Xu, Y. Wang, L. Wu, S. Xu, Y. Wang, S. Wang, Computational
    fluid dynamics simulation of brine–seawater mixing in a
    rotary energy recovery device, Ind. Eng. Chem. Res., 53 (2014)
    18304–18310. 
-  E. Xu, Y. Wang, J. Zhou, S. Xu, S. Wang, Theoretical investigations
    on rotor speed of the self-driven rotary energy recovery device
    through CFD simulation, Desalination, 398 (2016) 189–197. 
-  H. Bie, Y. Jia, W. An, C. Li, J. Zhu, CFD Simulation of the
    effects of extended angle on the mixing performances of rotary
    pressure exchanger, Chem. Eng., 61 (2017) 835–840. 
-  N. Liu, Z. Liu, Y. Li, L. Sang, Studies on leakage characteristics
    and efficiency of a fully-rotary valve energy recovery device by
    CFD simulation, Desalination, 415 (2017) 40–48. 
-  N. Liu, Z. Liu, Y. Li, L. Sang, Development and experimental
    studies on a fully-rotary valve energy recovery device for
    SWRO desalination system, Desalination, 397 (2016) 67–74. 
-  N. Liu, Z. Liu, Y. Li, L. Sang, An optimization study on the seal
    structure of fully-rotary valve energy recovery device by CFD,
    Desalination, 459 (2019) 46–58. 
-  O. Al-Hawaj, Theoretical analysis of sliding vane energy
    recovery device, Desal. Water Treat., 36 (2011) 354–362. 
-  F. Yin, S. Nie, H. Ji, F. Lou, Numerical study of structure
    parameters on energy transfer and flow characteristics of
    integrated energy recovery and pressure boost device, Desal.
    Water Treat., 131 (2018) 141–154. 
-  K. Liu, J. Deng, B. Yang, Research on Flow Field of a Fixed
    Duct in a Rotary Energy Recovery Device, ASME 2017 Fluids
    Engineering Division Summer Meeting, American Society
    of Mechanical Engineers, Vail, Colorado, USA, 2017, pp.
    V01BT8A001–V01BT08A. 
-  K. Liu, J. Deng, F. Ye, Numerical simulation of flow structures
    in a rotary type energy recovery device, Desalination, 449 (2019)
    101–110. 
-  D. Song, Y. Wang, S. Xu, Z. Wang, H. Liu, S. Wang, Control logic
    and strategy for emergency condition of piston-type energy
    recovery device, Desalination, 348 (2014) 1–7. 
-  D. Song, Y. Wang, S. Xu, J. Gao, Y. Ren, S. Wang, Analysis,
    experiment and application of a power-saving actuator applied
    in the piston-type energy recovery device, Desalination,
    361 (2015) 65–71. 
-  J. Zhou, Y. Wang, Z. Feng, Z. He, S. Xu, Effective modifications
    of reciprocating-switcher energy recovery device by adopting
    pilot valve plates to decrease the switching load and fluid
    fluctuations, Desalination, 462 (2019) 39–47. 
-  F. Ye, J. Deng, Z. Cao, B. Yang, Study of efficiency in a sliding
    vane pressure exchanger, Chem. Eng. Trans., 61 (2017) 841–846. 
-  J. Zhou, Y. Wang, Y. Duan, J. Tian, S. Xu, Capacity flexibility
    evaluation of a reciprocating-switcher energy recovery device
    for SWRO desalination system, Desalination, 416 (2017) 45–53. 
-  A. Bermudez-Contreras, M. Thomson, Modified operation
    of a small scale energy recovery device for seawater reverse
    osmosis, Desal. Water Treat., 13 (2010) 195–202. 
-  Z. Wang, Y. Wang, Y. Zhang, B. Qi, S. Xu, S. Wang, Pilot tests
    of fluid-switcher energy recovery device for seawater reverse
    osmosis desalination system, Desal. Water Treat., 48 (2012)
    310–314. 
-  X. Wang, Y. Wang, J. Wang, S. Xu, Y. Wang, S. Wang, Comparative
    study on stand-alone and parallel operating schemes of energy
    recovery device for SWRO system, Desalination, 254 (2010)
    170–174. 
-  B. Qi, Y. Wang, Z. Wang, Y. Zhang, S. Xu, S. Wang, Theoretical
    investigation on internal leakage and its effect on the efficiency
    of fluid switcher-energy recovery device for reverse osmosis
    desalting plant, Chin. J. Chem. Eng., 21 (2013) 1216–1223. 
-  Y. Wang, Y. Ren, J. Zhou, E. Xu, S. Xu, Functionality test of an
    innovative single-cylinder energy recovery device for SWRO
    desalination system, Desalination, 388 (2016) 22–28. 
-  A.A. Tofigh, G.D. Najafpour, Technical and economical
    evaluation of desalination processes for potable water from
    seawater, Middle-East J. Sci. Res., 12 (2012) 42–45. 
-  B. Sauvet-Goichon, Ashkelon desalination plant-a successful
    challenge, Desalination, 203 (2007) 75–81. 
-  V. García Molina, M. Taub, L. Yohay, M. Busch, Long term
    membrane process and performance in Ashkelon seawater
    reverse osmosis desalination plant, Desal. Water Treat.,
    31 (2011) 115–120. 
-  M. Taub, The World’s Largest SWRO Desalination Plant 15
    Months of Operational Experience, IDA World Congress
    Maspalomas, Gran Canaria–Spain, 2007. 
-  S.A.N. Zealand, Perth Seawater Desalination Plant, SUEZ:
    Rhodes NSW, Australia. Available at: http://www.degremont.
    com.au/media/general/Perth_Seawater_Desalination_Plant
    _1.pdf (accessed 9/24/2018). 
-  D.W. Solutions, Reverse osmosis: membranes help beat the
    drought, Filtr. Sep., 46 (2009) 23–24. 
-  M.A. Sanz, C. Miguel, R. Arbos, M. Munoz, J. Mesa, Two Years
    in Barcelona with Tap Water from SWRO Llobregat Plant, IDA
    World Congress, Perth, Australia, 2011. 
-  M. Faigon, Y. Egozy, D. Hefer, M. Ilevicky, Y. Pinhas, Hadera
    desalination plant two years of operation, Desal. Water Treat.,
    51 (2013) 132–139. 
-  J. Kim, S. Hong, A novel single-pass reverse osmosis
    configuration for high-purity water production and low
    energy consumption in seawater desalination, Desalination,
    429 (2018) 142–154. 
-  J. Evans Robert, Sustainable supply, Civ. Eng., 81 (2011) 50–57. 
-  I. El Saliby, Y. Okour, H.K. Shon, J. Kandasamy,
    I.S. Kim, Desalination plants in Australia, review and facts,
    Desalination, 247 (2009) 1–14. 
-  Global Water Award, Global Water Intelligence, Oxford, UK,
    2012. Available at: https://globalwaterawards.
    com/2012-winn
    ers/#DesalinationPlantoftheYear. 
-  B. Blanco, ERI helps make fresh water production more
    affordable, Membr. Technol., 2010 (2010) 8. 
-  C. Hurn, T. Hagedorn, Tuaspring Sea Water Desalination
    with CCPP in Singapore: An Example for Sustainable Power
    Generation, PowerGen Asia Bangkok, 2012. 
-  F.C. Looi, Assessment of Future Water Resources Sustainability
    Based on 4 National Taps of Singapore. 
-  M. Faigon, Success behind advanced SWRO desalination
    plant, Filtr. Sep., 53 (2016) 29–31. 
-  A. Efraty, Closed circuit desalination series no-6: conventional
    RO compared with the conceptually different new closed
    circuit desalination technology, Desal. Water Treat., 41 (2012)
    279–295. 
-  E. Lapuente, Full cost in desalination: a case study of the
    Segura River Basin, Desalination, 300 (2012) 40–45. 
-  acuaMed Inc. Acuamed Annual Report, acuaMed Inc.,
    Madrid, Spain, 2013. Available at: http://www.acuamed.es/
    media/memorias/eng/report13.pdf. 
-  V. Martínez-Alvarez, M.J. González-Ortega, B. Martin-Gorriz,
    M. Soto-García, J.F. Maestre-Valero, Seawater Desalination for
    Crop Irrigation—Current Status and Perspectives, Emerging
    Technologies for Sustainable Desalination Handbook,
    Elsevier, 2018, pp. 461–492. 
-  IDA Desalination Yearbook 2016–2017, Global Water
    Intelligence, Oxford, UK. 
-  N. Voutchkov, CO2 neutral seawater desalination, Environ.
    Sci. Eng., 22 (2009) 22–24. 
-  Global Water Award, Global Water Intelligence, Oxford,
    UK, 2017. Available at: https://globalwaterawards.com/2017-industrial-desalination-plant-of-the-year/.