References
  -  Y.T. Tu, Y. Xiong, S.H. Tian, L.J. Kong, C. Descorme, Catalytic
    wet air oxidation of 2-chlorophenol over sewage sludge-derived
    carbon-based catalysts, J. Hazard. Mater., 276 (2014) 88–96. 
-  R.K. Garlapalli, B. Wirth, M.T. Reza, Pyrolysis of hydrochar
    from digestate: effect of hydrothermal carbonization and
    pyrolysis temperatures on pyrochar formation, Bioresour.
    Technol., 220 (2016) 168–174. 
-  J. Havukainen, M.X. Zhan, J. Dong, M. Liikanen, I. Deviatkin,
    X.D. Li, M. Horttanainen, Environmental impact assessment of
    municipal solid waste management incorporating mechanical
    treatment of waste and incineration in Hangzhou, China,
    J. Cleaner Prod., 141 (2017) 453–461. 
-  X.D. Wang, Q.Q. Chi, X.J. Liu, Y. Wang, Influence of pyrolysis
    temperature on characteristics and environmental risk of heavy
    metals in pyrolyzed biochar made from hydrothermally treated
    sewage sludge, Chemosphere, 216 (2019) 698–706. 
-  P. Devi, A.K. Saroha, Risk analysis of pyrolyzed biochar
    made from paper mill effluent treatment plant sludge for
    bioavailability and eco-toxicity of heavy metals, Bioresour.
    Technol., 162 (2014) 308–315. 
-  H. Yoshida, M.T. Hoeve, T.H. Christensen, S. Bruun, L.S. Jensen,
    C. Scheutz, Life cycle assessment of sewage sludge management
    options including long-term impacts after land application,
    J. Cleaner Prod., 174 (2018) 538–547. 
-  J. Racek, J. Sevcik, T. Chorazy, J. Kucerik, P. Hlavinek, Biochar
    – recovery material from pyrolysis of sewage sludge: a review,
    Waste Biomass Valorization, 11 (2020) 3677–3709. 
-  A.G. Capodaglio, A. Callegari, Feedstock and process influence
    on biodiesel produced from waste sewage sludge, J. Environ.
    Manage., 216 (2018) 176–182. 
-  Z.C. Lei, W.M. Feng, C.H. Feng, W.J. Zhou, C.H. Wei, X. Wang,
    Nitrified coke wastewater sludge flocs: an attractive precursor
    for N,S dual-doped graphene-like carbon with ultrahigh
    capacitance and oxygen reduction performance, J. Mater. Chem.
    A, 5 (2017) 2012–2020. 
-  B. Bratina, A. Šorgo, J. Kramberger, U. Ajdnik, L.F. Zemljič,
    J. Ekart, R. Šafarič, From municipal/industrial wastewater
    sludge and FOG to fertilizer: a proposal for economic sustainable
    sludge management, J. Environ. Manage., 183 (2016) 1009–1025. 
-  S.H. Ho, Y.D. Chen, Z.K. Yang, D. Nagarajan, J.S. Chang,
    N.Q. Ren, High-efficiency removal of lead from wastewater by
    biochar derived from anaerobic digestion sludge, Bioresour.
    Technol., 246 (2017) 142–149. 
-  B. Rincón, M.C. Portillo, J.M. González, R. Borja, Microbial
    community dynamics in the two-stage anaerobic digestion
    process of two-phase olive mill residue, Int. J. Environ. Sci.
    Technol., 10 (2013) 635–644. 
-  H. Carrère, C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenès,
    J.P. Steyer, I. Ferrer, Pretreatment methods to improve sludge
    anaerobic degradability: a review, J. Hazard. Mater., 183 (2010)
    1–15. 
-  G. Yang, G.M. Zhang, H.C. Wang, Current state of sludge
    production, management, treatment and disposal in China,
    Water Res., 78 (2015) 60–73. 
-  Y.M. Wang, H.Z. Wei, Y. Zhao, W.J. Sun, C.L. Sun, Low
    temperature modified sludge-derived carbon catalysts for
    efficient catalytic wet peroxide oxidation of m-cresol, Green
    Chem., 19 (2017) 1362–1370. 
-  L. Yu, W.T. Jiang, Y. Yu, C.L. Sun, Effects of dilution ratio and
    Fe0 dosing on biohydrogen production from dewatered sludge
    by hydrothermal pretreatment, Environ. Technol., 35 (2014)
    3092–3104. 
-  H. Pan, Effects of liquefaction time and temperature on heavy
    metal removal and distribution in liquefied CCA-treated wood
    sludge, Chemosphere, 80 (2010) 438–444. 
-  W.S. Shi, C.G. Liu, D.H. Ding, Z.F. Lei, Y.N. Yang, C.P. Feng,
    Z.Y. Zhang, Immobilization of heavy metals in sewage sludge
    by using subcritical water technology, Bioresour. Technol.,
    137 (2013) 18–24. 
-  K. Xiao, Y. Chen, X. Jiang, Q. Yang, W.Y. Seow, W.Y. Zhu,
    Y. Zhou, Variations in physical, chemical and biological
    properties in relation to sludge dewaterability under Fe(II) –
    oxone conditioning, Water Res., 109 (2016) 13–23. 
-  K. Song, X. Zhou, Y.Q. Liu, G.-J. Xie, D.B. Wang, T.T. Zhang,
    C.S. Liu, P. Liu, B.B. Zhou, Q.L. Wang, Improving dewaterability
    of anaerobically digested sludge by combination of persulfate
    and zero valent iron, Chem. Eng. J., 295 (2016) 436–442. 
-  B.J. Ni, X.F. Yan, J. Sun, X.M. Chen, L. Peng, W. Wei, D.B. Wang,
    S. Mao, X.H. Dai, Q.L. Wang, Persulfate and zero valent iron
    combined conditioning as a sustainable technique for enhancing
    dewaterability of aerobically digested sludge, Chemosphere,
    232 (2019) 45–53. 
-  X. Zhou, Q.L. Wang, G.M. Jiang, P. Liu, Z.G. Yuan, A novel
    conditioning process for enhancing dewaterability of waste
    activated sludge by combination of zero-valent iron and
    persulfate, Bioresour. Technol., 185 (2015) 416–420. 
-  Y.-D. Chen, S.-H. Ho, D.W. Wang, Z.-S. Wei, J.-S. Chang,
    N.-Q. Ren, Lead removal by a magnetic biochar derived from
    persulfate-ZVI treated sludge together with one-pot pyrolysis,
    Bioresour. Technol., 247 (2018) 463–470. 
-  H.B. Liu, H. Xiao, B. Fu, H. Liu, Feasibility of sludge deepdewatering
    with sawdust conditioning for incineration disposal
    without energy input, Chem. Eng. J., 313 (2017) 655–662. 
-  Q.F. Yang, K. Dussan, R.F.D. Monaghan, X.M. Zhan, Energy
    recovery from thermal treatment of dewatered sludge in
    wastewater treatment plants, Water Sci. Technol., 74 (2016)
    672–680. 
-  A. Zaker, Z. Chen, X.L. Wang, Q. Zhang, Microwave-assisted
    pyrolysis of sewage sludge: a review, Fuel Process. Technol.,
    187 (2019) 84–104. 
-  A. Callegari, P. Hlavinek, A.G. Capodaglio, Production of energy
    (biodiesel) and recovery of materials (biochar) from pyrolysis
    of urban waste sludge, Rev. Ambiente Água, 13 (2018) 1–14. 
-  A. Callegari, A.G. Capodaglio, Properties and beneficial uses
    of (bio)chars, with special attention to products from sewage
    sludge pyrolysis, Resources, 7 (2018) 1–22. 
-  J.A. Menéndez, A. Domínguez, M. Inguanzo, J.J. Pis, Microwaveinduced
    drying, pyrolysis and gasification (MWDPG) of
    sewage sludge: vitrification of the solid residue, J. Anal. Appl.
    Pyrolysis, 74 (2005) 406–412. 
-  L. Fang, N.N. Yuan, Y.G. Wu, X.X. Zhao, H.Y. Sun, Evolution of
    heavy metals leachability and speciation in residues of sewage
    sludge treated by microwave assisted pyrolysis, Appl. Mech.
    Mater., 178–181 (2012) 833–837. 
-  J. Raček, J. Ševčík, R. Komendová, J. Kučerík, P. Hlavínek,
    Heavy metal fixation in biochar after microwave pyrolysis of
    sewage sludge, Desal. Water Treat., 159 (2019) 79–92. 
-  K.H. Lin, J.Y. Zeng, H.L. Chiang, Microwave pyrolysis of
    sludge for potential use as land application and biofuel,
    J. Chem. Technol. Biotechnol., 95 (2020) 975–984. 
-  T. Chen, Y.X. Zhang, H.T. Wang, W.J. Lu, Z.Y. Zhou, Y.C. Zhang,
    L.L. Ren, Influence of pyrolysis temperature on characteristics
    and heavy metal adsorptive performance of biochar derived
    from municipal sewage sludge, Bioresour. Technol., 164 (2015)
    47–54. 
-  K. Mahapatra, D.S. Ramteke, L.J. Paliwal, Production of
    activated carbon from sludge of food processing industry under
    controlled pyrolysis and its application for methylene blue
    removal, J. Anal. Appl. Pyrolysis, 95 (2012) 79–86. 
-  L. Gu, N.W. Zhu, P. Zhou, Preparation of sludge derived
    magnetic porous carbon and their application in Fenton-like
    degradation of 1-diazo-2-naphthol-4-sulfonic acid, Bioresour.
    Technol., 118 (2012) 638–642. 
-  M.K. Hossain, V. Strezov, K.Y. Chan, A. Ziolkowski, P.F. Nelson,
    Influence of pyrolysis temperature on production and nutrient
    properties of wastewater sludge biochar, J. Environ. Manage.,
    92 (2011) 223–228. 
-  A. Funke, F. Ziegler, Hydrothermal carbonization of biomass: a
    summary and discussion of chemical mechanisms for process
    engineering, Biofuels, Bioprod. Biorefin., 4 (2010) 160–177. 
-  J.H. Yuan, R.K. Xu, H. Zhang, The forms of alkalis in the
    biochar produced from crop residues at different temperatures,
    Bioresour. Technol., 102 (2011) 3488–3497. 
-  H. Zheng, Z.Y. Wang, X. Deng, J. Zhao, Y. Luo, J. Novak,
    S. Herbert, B.S. Xing, Characteristics and nutrient values of
    biochars produced from giant reed at different temperatures,
    Bioresour. Technol., 130 (2012) 463–471. 
-  M.C. Ncibi, V. Jeanne-Rose, B. Mahjoub, C. Jean-Marius,
    J. Lambert, J.J. Ehrhardt, Y. Bercion, M. Seffen, S. Gaspard,
    Preparation and characterisation of raw chars and physically
    activated carbons derived from marine Posidonia oceanica (L.)
    fibres, J. Hazard. Mater., 165 (2009) 240–249. 
-  J.F. González, S. Román, J.M. Encinar, G. Martínez, Pyrolysis of
    various biomass residues and char utilization for the production
    of activated carbons, J. Anal. Appl. Pyrolysis, 85 (2009) 134–141. 
-  X.L. Xi, X.L. Guo, Preparation of bio-charcoal from sewage
    sludge and its performance on removal of Cr(VI) from aqueous
    solutions, J. Mol. Liq., 183 (2013) 26–30. 
-  Y.M. Wang, H.Z. Wei, Y. Zhao, W.J. Sun, C.L. Sun,
    The optimization, kinetics and mechanism of m-cresol
    degradation via catalytic wet peroxide oxidation with sludgederived
    carbon catalyst, J. Hazard. Mater., 326 (2017) 36–46. 
-  Y. Yu, H.Z. Wei, L. Yu, T. Zhang, S. Wang, X.N. Li, J.H. Wang,
    C.L. Sun, Surface modification of sewage sludge derived
    carbonaceous catalyst for m-cresol catalytic wet peroxide
    oxidation and degradation mechanism, RSC Adv., 5 (2015)
    41867–41876. 
-  M.A. Lillo-Ródenas, A. Ros, E. Fuente, M.A. Montes-Morán,
    M.J. Martin, A. Linares-Solano, Further insights into the
    activation process of sewage sludge-based precursors by
    alkaline hydroxides, Chem. Eng. J., 142 (2008) 168–174. 
-  V.M. Monsalvo, A.F. Mohedano, J.J. Rodriguez, Activated
    carbons from sewage sludge: application to aqueous-phase
    adsorption of 4-chlorophenol, Desalination, 277 (2011) 377–382. 
-  H.R. Hwang, W.J. Choi, T.J. Kim, J.S. Kim, K.J. Oh,
    The preparation of an adsorbent from mixtures of sewage
    sludge and coal-tar pitch using an alkaline hydroxide
    activation agent, J. Anal. Appl. Pyrolysis, 83 (2008) 220–226. 
-  T. Nunthaprechachan, S. Pengpanich, M. Hunsom, Adsorptive
    desulfurization of dibenzothiophene by sewage sludge-derived
    activated carbon, Chem. Eng. J., 228 (2013) 263–271. 
-  S. Jeyaseelan, L.G. Qing, Development of adsorbent/catalyst
    from municipal wastewater sludge, Water Sci. Technol.,
    34 (1996) 499–505. 
-  S.S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X.D. Li, Removal
    of methylene blue from aqueous solution by sewage
    sludge-derived biochar: adsorption kinetics, equilibrium,
    thermodynamics and mechanism, J. Environ. Chem. Eng.,
    5 (2017) 601–611. 
-  L.H. Liu, Y. Lin, Y.Y. Liu, H. Zhu, Q. He, Removal of methylene
    blue from aqueous solutions by sewage sludge based granular
    activated carbon: adsorption equilibrium, kinetics, and
    thermodynamics, J. Chem. Eng. Data, 58 (2013) 2248–2253. 
-  A.F.M. Streit, L.N. Côrtes, S.P. Druzian, M. Godinho,
    G.C. Collazzo, D. Perondi, G.L. Dotto, Development of
    high quality activated carbon from biological sludge and its
    application for dyes removal from aqueous solutions, Sci. Total
    Environ., 660 (2019) 277–287. 
-  S. Rio, C. Faur-Brasquet, L.L. Coq, P. Courcoux, P. Le Cloirec,
    Experimental design methodology for the preparation of
    carbonaceous sorbents from sewage sludge by chemical
    activation––application to air and water treatments,
    Chemosphere, 58 (2005) 423–437. 
-  F. Rozada, M. Otero, A. Morán, A.I. García, Adsorption of
    heavy metals onto sewage sludge-derived materials, Bioresour.
    Technol., 99 (2008) 6332–6338. 
-  S. Rio, C. Faur-Brasquet, L. Le Coq, P. Le Cloirec, Structure
    characterization and adsorption properties of pyrolyzed
    sewage sludge, Environ. Sci. Technol., 39 (2014) 4249–4257. 
-  S. Senthilkumaar, P.R. Varadarajan, K. Porkodi, C.V. Subbhuraam,
    Adsorption of methylene blue onto jute fiber carbon:
    kinetics and equilibrium studies, J. Colloid Interface Sci.,
    284 (2005) 78–82. 
-  B.H. Hameed, A.T.M. Din, A.L. Ahmad, Adsorption of
    methylene blue onto bamboo-based activated carbon:
    kinetics and equilibrium studies, J. Hazard. Mater., 141 (2007)
    819–825. 
-  M. Seredych, T.J. Bandosz, Removal of cationic and ionic dyes
    on industrial−municipal sludge based composite adsorbents,
    Ind. Eng. Chem. Res., 46 (2007) 1786–1793. 
-  M. Seredych, T.J. Bandosz, Removal of copper on composite
    sewage sludge/industrial sludge-based adsorbents: the role of
    surface chemistry, J. Colloid Interface Sci., 302 (2006) 379–388. 
-  L. Maa, C.Y. Jin, L.Y. An, L. Huang, L.J. Li, H.B. Jin, B. Liang,
    H.Z. Wei, C.L. Sun, Preliminary investigation of the degradation
    mechanism of o, m and p-cresol using sludge-derived carbon
    nanosheets by catalytic oxidation based on quantum chemistry,
    Catal. Commun., 120 (2019) 59–65. 
-  Q. Huang, S. Song, Z. Chen, B.W. Hu, J.R. Chen, X.K. Wang,
    Biochar-based materials and their applications in removal of
    organic contaminants from wastewater: state-of-the-art review,
    Biochar, 1 (2019) 45–73. 
-  E.F. Mohamed, C. Andriantsiferana, A.M. Wilhelm, H. Delmas,
    Competitive adsorption of phenolic compounds from aqueous
    solution using sludge-based activated carbon, Environ.
    Technol., 32 (2011) 1325–1336. 
-  Y. Yu, H.Z. Wei, L. Yu, B. Gu, X.R. Li, X. Rong, Y. Zhao, L.L. Chen,
    C.L. Sun, Catalytic wet air oxidation of m-cresol over a surfacemodified
    sewage sludge-derived carbonaceous catalyst, Catal.
    Sci. Technol., 6 (2016) 1085–1093. 
-  G. Wen, Z.H. Pan, J. Ma, Z.Q. Liu, L. Zhao, J.J. Li, Reuse of
    sewage sludge as a catalyst in ozonation—efficiency for the
    removal of oxalic acid and the control of bromate formation,
    J. Hazard. Mater., 239–240 (2012) 381–388. 
-  Y. Yu, H.Z. Wei, L. Yu, W. Wang, Y. Zhao, B. Gu, C.L. Sun,
    Sewage-sludge-derived carbonaceous materials for catalytic
    wet hydrogen peroxide oxidation of m-cresol in batch and
    continuous reactors, Environ. Technol., 37 (2016) 153–162. 
-  R.R.N. Marques, F. Stüber, K.M. Smith, A. Fabregat, C. Bengoa,
    J. Font, A. Fortuny, S. Pullket, G.D. Fowler, N.J.D. Graham,
    Sewage sludge based catalysts for catalytic wet air oxidation of
    phenol: preparation, characterisation and catalytic performance,
    Appl. Catal., B, 101 (2011) 306–316. 
-  S.Z. Wang, J.L. Wang, Activation of peroxymonosulfate by
    sludge-derived biochar for the degradation of triclosan in water
    and wastewater, Chem. Eng. J., 356 (2019) 350–358. 
-  B.C. Huang, J. Jiang, G.X. Huang, H.Q. Yu, Sludge biocharbased
    catalysts for improved pollutant degradation by
    activating peroxymonosulfate, J. Mater. Chem. A, 6 (2018)
    8978–8985. 
-  S.J. Yuan, X.H. Dai, Facile synthesis of sewage sludge-derived
    mesoporous material as an efficient and stable heterogeneous
    catalyst for photo-Fenton reaction, Appl. Catal., B, 154–155
    (2014) 252–258. 
-  A. Khataee, B. Kayan, P. Gholami, D. Kalderis, S. Akay,
    L. Dinpazhoh, Sonocatalytic degradation of Reactive Yellow
      39 using synthesized ZrO2 nanoparticles on biochar, Ultrason.
    Sonochem., 39 (2017) 540–549. 
-  F.Z. Zhang, K.Y. Wu, H.T. Zhou, Y. Hu, P. Sergei, H.Z. Wu,
    C.H. Wei, Ozonation of aqueous phenol catalyzed by biochar
    produced from sludge obtained in the treatment of coking
    wastewater, J. Environ. Manage., 224 (2018) 376–386. 
-  H.F. Wen, L. Gu, H.X. Yu, X.B. Qiao, D.F. Zhang, J.F. Ye, Radical
    assisted iron impregnation on preparing sewage sludge derived
    Fe/carbon as highly stable catalyst for heterogeneous Fenton
    reaction, Chem. Eng. J., 352 (2018) 837–846. 
-  Y.T. Tu, S.H. Tian, L.J. Kong, Y. Xiong, Co-catalytic effect of
    sewage sludge-derived char as the support of Fenton-like
    catalyst, Chem. Eng. J., 185–186 (2012) 44–51. 
-  B.L. Hou, H.J. Han, S.Y. Jia, H.F. Zhuang, P. Xu, K. Li, Threedimensional
    heterogeneous electro-Fenton oxidation of
    biologically pretreated coal gasification wastewater using
    sludge derived carbon as catalytic particle electrodes and
    catalyst, J. Taiwan Inst. Chem. Eng., 60 (2016) 352–360. 
-  X.P. Wang, L. Gu, P. Zhou, N. Zhu, C.X. Li, H. Tao, H.F. Wen,
    D.F. Zhang, Pyrolytic temperature dependent conversion of
    sewage sludge to carbon catalyst and their performance in
    persulfate degradation of 2-Naphthol, Chem. Eng. J., 324 (2017)
    203–215. 
-  H.F. Zhuang, H.J. Han, B.L. Hou, S.Y. Jia, Q. Zhao,
    Heterogeneous catalytic ozonation of biologically pretreated
    Lurgi coal gasification wastewater using sewage sludge based
    activated carbon supported manganese and ferric oxides as
    catalysts, Bioresour. Technol., 166 (2014) 178–186. 
-  S. Esplugas, S. Contreras, D.F. Ollis, Engineering aspects of
    the integration of chemical and biological oxidation: simple
    mechanistic models for the oxidation treatment, J. Environ.
    Eng., 130 (2004) 967–974. 
-  F. Lian, B.S. Xing, Black carbon (biochar) in water/soil
    environments: molecular structure, sorption, stability, and
    potential risk, Environ. Sci. Technol., 51 (2017) 13517–13532. 
-  P.S. Bhupinder, A.L. Cowie, R.J. Smernik, Biochar carbon
    stability in a clayey soil as a function of feedstock and pyrolysis
    temperature, Environ. Sci. Technol., 46 (2012) 11770–11778. 
-  H. Li, S.A.A. Mahyoub, W.J. Liao, S.Q. Xia, H.C. Zhao, M.Y. Guo,
    P.S. Ma, Effect of pyrolysis temperature on characteristics
    and aromatic contaminants adsorption behavior of magnetic
    biochar derived from pyrolysis oil distillation residue,
    Bioresour. Technol., 223 (2017) 20–26. 
-  S. Bolognesi, G. Bernardi, A. Callegari, D. Dondi, A.G. Capodaglio,
    Biochar production from sewage sludge and microalgae
    mixtures: properties, sustainability and possible role in circular
    economy, Biomass Convers. Biorefin., (2019), https://doi.
    org/10.1007/s13399-019-00572-5. 
-  Y.Q. Yang, M.H. Cui, Y.G. Ren, J.C. Guo, Z.Y. Zheng,
    H. Liu, Towards understanding the mechanism of heavy metals
    immobilization in biochar derived from co-pyrolysis of sawdust
    and sewage sludge, Bull. Environ. Contam. Toxicol., 104 (2020)
    489–496. 
-  Q. Dong, S.P. Zhang, B. Wu, M. Pi, Y.Q. Xiong, H.Y. Zhang,
    Co-pyrolysis of sewage sludge and rice straw: thermal behavior
    and char characteristic evaluations, Energy Fuels, 34 (2019)
    607–615. 
-  Y.Q. Yi, G.Q. Tu, D.Y. Zhao, P.E. Tsang, Z.Q. Fang, Pyrolysis of
    different biomass pre-impregnated with steel pickling waste
    liquor to prepare magnetic biochars and their use for the
    degradation of metronidazole, Bioresour. Technol., 89 (2019)
    121613. 
-  K.M. Smith, G.D. Fowler, S. Pullket, N.J.D. Graham, The
    production of attrition resistant, sewage–sludge derived,
    granular activated carbon, Sep. Purif. Technol., 98 (2012)
    240–248. 
-  X.H. Hu, J.Y. Xu, M.S. Wu, J.X. Xing, W.S. Bi, K. Wang, J.F.
    Ma, X. Liu, Effects of biomass pre-pyrolysis and pyrolysis
    temperature on magnetic biochar properties, J. Anal. Appl.
    Pyrolysis, 127 (2017) 196–202. 
-  S.D. Guo, H. Liang, L.M. Bai, F.S. Qu, A. Ding, B. Ji, X.
    Wang, G.B. Li, Synergistic effects of wheat straw powder
    and persulfate/Fe(II) on enhancing sludge dewaterability,
    Chemosphere, 215 (2019) 333–341.