References

  1. P. Wang, Progress of treatment technology of coal mine water in China, Sci. Technol. Dat. Coal. Min. Adm., 115 (2008) 1–4.
  2. Q.Y. Feng, T. Li, B. Qian, L. Zhou, B. Gao, T. Yuan, Chemical characteristics and utilization of coal mine drainage in China, Mine Water Environ., 33 (2014) 276–286.
  3. L.H. Huangfu, Analysis of mine water quality and treatment process, Publ. Comm. Sci. Technol., 6 (2014) 186.
  4. S.Y. Li, G.Y. Cao, Study on comprehensive utilization of coal mine water, Res. Econ. Environ. Prot., 11 (2018) 21–29.
  5. Y.S. Liang, Treatment and comprehensive utilization of coal mine water, Shanx. Sci. Technol., 33 (2018) 84–86.
  6. H.L. Mao, X.F. Fu, X.W. Gu, H.M. He, Estimation of regional available mine water quantity and its application, J. Water Resour. Res., 8 (2019) 146–153.
  7. L. Gao, Current status and development trend of mine water treatment technology in China, Coal. Sci. Technol., 9 (2007) 1–5.
  8. P.X. Pinto, S.R. Al-Abed, D.A. Balz, B.A. Butler, R.B. Landy, S.J. Smith, Bench-scale and pilot-scale treatment technologies for the removal of total dissolved solids from coal mine water: a review, Mine Water Environ., 35 (2016) 94–112.
  9. J.I. Bregman, J.M. Shackelford, Ion exchange is feasible for desalination, Environ. Sci. Technol., 3 (1969) 336–340.
  10. X. He, D. Hu, Z. Hu, Research on technology for high mineralized mine water treatment, Coal. Sci. Technol., 30 (2002) 38–41.
  11. A.F.S. Foureaux, V.R. Moreira, Y.A.R. Lebron, L.V.S. Santos, M.C.S. Amaral, Direct contact membrane distillation as an alternative to the conventional methods for value-added compounds recovery from acidic effluents: a review, Sep. Purif. Technol., 236 (2020) 1–14.
  12. B.C. Li, H. Zhao, A review on northwest mine water’s treatment and comprehensive utilization, J. Jining Univ., 34 (2013) 29–32.
  13. X.L. Ren, Discuss integrated exploitation and utilization of coal water energy, Technol. Manage., 5 (2006) 54–55.
  14. R. Yi, X.S. Ma, G.Y. Xiao, Technology and research progress of mine water treatment, Environ. Dev., 11 (2019) 71–72.
  15. S.Y. Zhang, H. Wang, X.W. He, S.Q. Guo, Y. Xia, Y.X. Zhou, K. Liu, S.P. Yang, Research progress, problems and prospects of mine water treatment technology and resource utilization in China, Crit. Rev. Env. Sci. Technol., 50 (2020) 331–383.
  16. D.W. Jin, G.R. Ge, Q. Zhang, Y.D. Guo, New energy-saving desalination technology of highly-mineralized mine water, Coal. Sci. Technol., 46 (2018) 12–18.
  17. B.B. Deng, Treatment of mine water with high salinity, Environ. Dev., 1 (2005) 50–51.
  18. L.J. Li, Research on key technology of high suspended matter and high mineralized mine water resources, Shanx. Chem. Ind., 6 (2018) 186–188.
  19. E.K. Li, L. Bai, Y.Y. Han, Z.Y. Li, Research on coal mine water utilization and its potential evaluation index system based on two-way coordination of supply and demand, Ind. Saf. Environ., 12 (2019) 103–106.
  20. J.Q. Guo, Present situation and application of desalination technology in highly mineralized mine water, Environ. Sci. Manage., 39 (2014) 123–125.
  21. W.A.M. Fernando, I.M.S.K. Ilankoon, T.H. Syed, M. Yellishetty. Challenges and opportunities in the removal of sulphate ions in contaminated mine water: a review, Min. Eng., 117 (2018) 74–90.
  22. F.M. Kusin, A.P. Jarvis, C.J. Gandy, Hydraulic performance assessment of passive coal mine water treatment systems in the UK, Ecol. Eng., 49 (2012) 233–243.
  23. D. Maiti, I. Ansari, M.A. Rather, A. Deepa, Comprehensive review on wastewater discharged from the coal-related industries – characteristics and treatment strategies, Water Sci. Technol., 79 (2019) 2023–2035.
  24. M. Sivakumar, M. Ramezanianpour, G. O’Halloran, Mine water treatment using a vacuum membrane distillation system, APCBEE Procedia, 5 (2013) 157–162.
  25. H.Q. Yang, R.F. Wang, Exploration on the development of mine water technology, Ind. Sci. Trib., 6 (2018) 75–76.
  26. S.X. Cheng, L.C. Cui, Scheme of advanced treatment of coal mine water, J. Taiy. Urban. Voc. Coll., 9 (2019) 179–181.
  27. D. Ma, J.J. Wang, Z.H. Li, Effect of particle erosion on mininginduced water inrush hazard of karst collapse pillar, Environ. Sci. Pollut. Res., 26 (2019) 19719–19728.
  28. C. Driussi, J. Jansz, Technological options for waste minimization in the mining industry, J. Cleaner Prod., 14 (2006) 682–688.
  29. C.C. Feng, Z.T. Han, Z.Y. Zhang, Mine water pollution and acid mine water treatment, Coal. Technol., 29 (2010) 12–14.
  30. D.B. Johnson, K.B. Hallberg, Pitfalls of passive mine water treatment, Rev. Environ. Sci. Biotechnol., 1 (2002) 335–343.
  31. P.M. Yang, Current status and progress of research on coal mine acid mine water treatment and utilization, Sci. Technol. Inn. Her., 1 (2009) 125.
  32. D. Ma, J.J. Wang, X. Cai, X.T. Ma, J.X. Zhang, Z.L. Zhou, M. Tao, Effects of height/diameter ratio on failure and damage properties of granite under coupled bending and splitting deformation, Eng. Fract. Mech., 220 (2019) 106640.
  33. J. Guo, Treatment technology research on acid coal mine water, Energy. Environ. Prot., 27 (2013) 39–42.
  34. P.L. Younger, W.M. Mayes, The potential use of exhausted open pit mine voids as sinks for atmospheric CO2: insights from natural reedbeds and mine water treatment wetlands, Mine Water. Environ., 34 (2015) 112–120.
  35. H.E. Xu-Wen, L.I. Fu-Qin, New technology and development tendency of mine water treatment, Coal Sci. Technol., 38 (2010) 17–22.
  36. R.L. Zhou, L. Gao, M.Z. Chen, Discusses on the purification technology of mine drainage containing suspended substance, Coal Mine Environ. Prot., 14 (2000) 10–12.
  37. X.H. Zhang, X.W. He, M. Wei, F.Q. Li, P. Hou, C.H. Zhang, Magnetic flocculation treatment of coal mine water and a comparison of water quality prediction algorithms, Mine Water. Environ., 38 (2019) 391–401.
  38. J. Gao, Application prospect of PAFC on the treatment of mine drainage, Energy. Environ. Prot., 28 (2014) 1–4.
  39. C.S. Bai, Application of magnetic separation technology in underground water treatment of mine shaft, Coal Sci. Technol. Mag., 4 (2017) 150–154.
  40. J.Z. Zhou, Y.H. Jin, B.F. Luo, Application of mine supermagnetic separation water purification technology, Coll. Mech. Electr. Technol., 3 (2011) 87–88.
  41. Y.H. Liu, Application of super-magnetic separation technology in mine water treatment, Water Wastewater Eng., 4 (2015) 55–57.
  42. Z.S. Wei, X.J. Xu, P. Ning, Research and advance in wastewater treatment by flotation, J. Saf. Environ., 4 (2001) 14–18.
  43. Q.Z. Guo, Research on numerical simulation and measurement of damage depth of seam floor under confined water action, Min. Saf. Environ. Prot., 39 (2012) 72–74.
  44. M. Li-Yong, W. Wen-Juan, Discussion on treatment and graded comprehensive utilization methods for high-salinity mine water, Coal. Eng., 49 (2017) 26–28.
  45. H.-F. Sun, J. Chen, B. Li, D. Ni, H. Hu, C. Wang, F.-H. Zhao, Resource utilization of high TDS mine water in arid regions, Coal Eng., 47 (2015) 17–119.
  46. J.E. Kim, S. Phuntsho, L. Chekli, J.Y. Choi, H.K. Shon, Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water, Desalination, 429 (2018) 96–104.
  47. N.C. Darre, G.S. Toor, L. Ma, K. Inglett, Desalination of water: a review, Curr. Pollut., 3 (2018) 1–8.
  48. J. Kujawa, S. Cerneaux, S. Koter, W. Kujawski, Highly efficient hydrophobic titania ceramic membranes for water desalination, ACS Appl. Mater. Interfaces, 6 (2014) 14223–14230.
  49. A. El Amali, S. Bouguecha, M. Maalej, Experimental study of air gap and direct contact membrane distillation configurations: application to geothermal and seawater desalination, Desalination, 168 (2004) 357.
  50. A. Alkhudhiri, N. Darwish, N. Hilal, Membrane distillation: a comprehensive review, Desalination, 287 (2012) 2–18.
  51. R.W. Baker, Membrane Technology and Applications, Wiley, England, 2012.
  52. T. Jing-Shen, H. Chang-Feng, G. Zhong-Quan, Treatment process and engineering practice for mine drainage water with high suspended solids and high salinity, Energy Environ. Prot., 27 (2013) 30–32.
  53. L.K. Wang, J.P. Chen, Y.T. Hung, Membrane and Desalination Technology, Humana Press, New Jersey, America, 2011.
  54. J. Ahmed, Y. Jamal, M. Shujaatullah, Recovery of cooling tower blowdown water through reverse osmosis (RO): review of water parameters affecting membrane fouling and pretreatment schemes, Desal. Water Treat, 189 (2020) 9–17.
  55. W.-F. Chan, H.-Y. Chen, A. Surapathi, M.G. Taylor, X.H. Shao, E. Marand, J.K. Johnson, Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, ACS Nano, 7 (2013) 5308–5319.
  56. R. Thiruvenkatachari, M. Francis, M. Cunnington, S. Su, Application of integrated forward and reverse osmosis for coal mine wastewater desalination, Sep. Purif. Technol., 163 (2016) 181–188.
  57. C. Ze-Hui, Z. Hong-Fei, H. Jing, W.U. Gang, M. Ju-Zheng, Performance of a two-stage multi-effect solar desalination system based on humidification-dehumidification process, Trans. Beijing Inst. Technol., 35 (2015) 27–33.
  58. P.H. Gao, M. Zhang, Y.J. Du, B. Cheng, D.H. Zhang, Study on bubble column humidification and dehumidification system for coal mine wastewater treatment, Water Sci. Technol., 77 (2018) 1909–1919.
  59. C.W. Ong, C.-L. Chen, Technical and economic evaluation of seawater freezing desalination using liquefied natural gas, Energy, 181 (2019) 429–439.
  60. S. Mountadar, M. Guessous, A. Rich, F.Z. Karmil, H. El Alaoui Belghiti, M. Siniti, S. Tahiri, Desalination of spent ionexchange resin regeneration solutions by suspension freeze crystallization, Desalination, 468 (2019) 114059.
  61. P.H. Gao, Z. Guo, D.H. Zhang, X.Y. Zhou, G.Q. Zhou, Performance analysis of evaporation-freezing desalination system by humidity difference, Desalination, 347 (2014) 215–223.
  62. M. Mahdavi, A.H. Mahvi, S. Nasseri, M. Yunesian, Application of freezing to the desalination of saline water, Arabian J. Sci. Eng., 36 (2011) 1171–1177.
  63. P.L. Li, J. Ma, L.X. Xie, Recent progress of seawater desalination by freezing, Chem. Ind. Eng., 24 (2005) 749–753.
  64. J.A. Shufle, Deionized water by electrodialysis, J. Chem. Educ., 38 (1961) 17.
  65. S. Schlumpberger, N.B. Lu, M.E. Suss, M.Z. Bazant, Scalable and continuous water deionization by shock electrodialysis, Environ. Sci. Technol. Lett., 12 (2015) 367–372.
  66. J. Moreno, S. Grasman, R. van Engelen, K. Nijmeijer, Upscaling reverse electrodialysis, Environ. Sci. Technol., 52 (2018) 10856–10863.
  67. H. Runtti, E.-T. Tolonen, S. Tuomikoski, T. Luukkonen, U. Lassi, How to tackle the stringent sulfate removal requirements in mine water treatment—a review of potential methods, Environ. Res., 167 (2018) 207–222.
  68. Y. Tanaka, Ion-exchange membrane electrodialysis of saline water and its numerical analysis, Ind. Eng. Chem. Res., 50 (2011) 10765–10777.
  69. M. Mehanna, P.D. Kiely, D.F. Call, B.E. Logan, Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production, Environ. Sci. Technol., 44 (2010) 9578–9583.
  70. P. Li, B. Zhun, X.G. Wang, P.P. Liao, G.H. Wang, L.Z. Wang, Y. Guo, W.M. Zhang, Highly efficient interception and precipitation of uranium(VI) from aqueous solution by ironelectrocoagulation combined with cooperative chelation by organic ligands, Environ. Sci. Technol., 51 (2017) 14368–14378.
  71. Y.S. Tian, W.H. He, X.P. Zhu, W.L. Yang, N.Q. Ren, B.E. Logan, Improved electrocoagulation reactor for rapid removal of phosphate from wastewater, Environ. Sci. Technol., 5 (2017) 67–71.
  72. N. Han, G. Huang, C.J. An, S. Zhao, Y. Yao, H.Y. Fu, W. Li, Removal of sulfonated humic acid through a hybrid electrocoagulation–ultrafiltration process, Ind. Eng. Chem. Res., 54 (2015) 5793–5801.
  73. P. Cañizares, C. Jiménez, F. Martínez, C. Sáez, M.A. Rodrigo, Study of the electrocoagulation process using aluminum and iron electrodes, Ind. Eng. Chem. Res., 46 (2007) 6189–6195.
  74. P. Cañizares, F. Martínez, M. Carmona, J. Lobato, M.A. Rodrigo, Continuous electrocoagulation of synthetic colloid-polluted wastes, Ind. Eng. Chem. Res., 44 (2005) 8171–8177.
  75. D. Ma, H.Y. Duan, X.B. Li, Z.H. Li, Z.L. Zhou, T.B. Li, Effects of seepage-induced erosion on nonlinear hydraulic properties of broken red sandstones, Tunnelling Underground Space Technol., 91 (2019) 102993.
  76. Y. Nleya, G.S. Simate, S. Ndlovu, Sustainability assessment of the recovery and utilization of acid from acid mine drainage, J. Cleaner Prod., 113 (2016) 17–27.
  77. V. Mavrov, H. Chmiel, B. Heitele, F. Rögener, Desalination of surface water to industrial water with lower impact on the environment: Part 4: Treatment of effluents from water desalination stages for reuse and balance of the new technological concept for water desalination, Desalination, 124 (1999) 205–216.
  78. D. Feng, C. Aldrich, H. Tan, Treatment of acid mine water by use of heavy metal precipitation and ion exchange, Min. Eng., 13 (2000) 623–642.
  79. D.D. Caudle, Electrochemical Demineralization of Water with Carbon Electrodes, U.S. Department of the Interior, 1996.
  80. S. Evans, W.S. Hamilton, The mechanism of demineralization at carbon electrodes, J. Electrochem. Soc., 113 (1966) 1314–1319.
  81. G.W. Murphy, D.D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochim. Acta, 12 (1967) 1655–1664.
  82. Y. Oren, H. Tobias, A. Soffer, The electrical doublelayer of carbon and graphite electrodes: part I. Dependence on electrolyte type and concentration, J. Electroanal. Chem., 162 (1984) 87.
  83. J.C. Farmer, Method and Apparatus for Capacitive Deionization and Electrochemical Purification and Regeneration of Electrodes, US5954937A, The Regents of the University of California, 1995.
  84. S.T. Mayer, R.W. Pekala, J.L. Kaschmitter, The aerocapacitor: an electrochemical double-layer energy-storage device, Electrochem. Soc., 140 (1993) 446–451.
  85. R.W. Pekala, S.T. Mayer, J.F. Poco, J.L. Kaschmitter, Structure and Performance of Carbon Aerogel Electrodes, Spring Meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 1994.
  86. J.C. Farmer, D.V. Fix, G.C. Mack, Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes, J. Appl. Electrochem., 26 (1996) 1007–1018.
  87. J.C. Farmer, T.D. Tran, J.H. Richardson, D.V. Fix, S.C. May, S.L. Thomson, The Application of Carbon Aerogel Electrodes to Desalination and Waste Treatment, Proc. Separation Science and Technologies Conference, Annual Meeting of the American Institute of Chemical Engineers, Los Angeles, California, 1997.
  88. R.W. Pekala, Melamine-Formaldehyde Aerogels, US Patent 5081163, January 14, 1992, The United States of America as Represented by the Department of Energy, Washington, DC, 1992.
  89. S.T. Mayer, J.L. Kaschmitter, R.W. Pekala, Aquagel electrode separator for use in batteries and supercapacitors, March 28, Regents of University of California (Oakland, CA), United States, 1995.
  90. S.T. Mayer, J.L. Kaschmitter, R.W. Pekala, Carbon Aerogel Electrodes for Direct Energy Conversion, US5601938A, February 11, Regents of the University of California, 1997.
  91. L. Ling, R. Zhang, C. Lu, Process for Preparing Narrow Size Distribution Charcoal Aerogel, CN1401424, China, 2003.
  92. Z. Zhu, W. Wu, Z. Liu, Process for Preparing Carbon Aerogel, CN1395988, China, 2003.
  93. J.C. Farmer, S.M. Bahowick, J.E. Harrar, D.V. Fix, R.E. Martinelli, A.K. Vu, K.L. Carroll, Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water, Energy Fuels, 11 (1997) 337–347.
  94. H. Oda, Y. Nakagawa, Removal of ionic substances from dilute solution using activated carbon electrodes, Carbon, 41 (2003) 1037–1047.
  95. C.-M. Yang, W.-H. Choi, B.-K. Na, B.W. Cho, W.I. Cho, Capacitive deionization of NaCl solution with carbon aerogelsilicagel composite electrodes, Desalination, 174 (2005) 125–133.
  96. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review), Desalination, 228 (2008) 10–29.
  97. A.G. El-Deen, R.M. Boom, H.Y. Kim, H.W. Duan, M.B. Chan-Park, J.-H. Choi, Flexible 3D nanoporous graphene for desalination and bio-decontamination of brackish water via asymmetric capacitive deionization, ACS Appl. Mater. Interfaces, 8 (2016) 25313–25325.
  98. E. Ayranci, B.E. Conway, Adsorption and electrosorption at high-area carbon-felt electrodes for waste-water purification: systems evaluation with inorganic, S-containing anion, J. Appl. Electrochem., 31 (2001) 257–266.
  99. S.X. Xie, W. Ren, C. Qiao, K. Tong, J.W. Sun, M.D. Zhang, X.H. Liu, Z. Zhang, An electrochemical adsorption method for the reuse of waste water-based drilling fluids, Nat. Gas Ind., 38 (2018) 76–80.
  100. Y. Wei, W. Zhao, Z.X. Shi, Research on the removal of saline ions by electrosorption and its selective adsorption ability, Ind. Water Treat., 38 (2018) 37–40.
  101. A.P. Li, Research on the Exploitation of Coal Mine Drainage and the Economy Benefit Analysis, Shandong University of Science and Technology, Retrieved on 30th July, 2018. Available at: http://www.sdust.edu.cn/
  102. L.-P. Xiao, B. Liang, J.-Z. Di, Feasible research on coal mine drainage resources, J. Liaoning Tech. Univ., 22 (2003) 862–864.
  103. Y.X. Luo, Application of coal mine water treatment and electric adsorption technology in Huainan Ming Area, Coal Eng., 49 (2017) 66–68.
  104. Z.Q. Guo, Mine water treatment technology and application of high salinity degree, Mine Saf. Environ. Prot., 39 (2012) 72–74.