References

  1. F. Tohidi, Z. Cai, Fate and mass balance of triclosan and its degradation products: comparison of three different types of wastewater treatments and aerobic/anaerobic sludge digestion, J. Hazard. Mater., 323(Pt A) (2017) 329–340.
  2. G.-G. Ying, X.-Y. Yu, R.S. Kookana, Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling, Environ. Pollut., 150 (2007) 300–305.
  3. G.-G. Ying, R.S. Kookana, Triclosan in wastewaters and biosolids from Australian wastewater treatment plants, Environ. Int., 33 (2007) 199–205.
  4. L. Xin, Y. Sun, J. Feng, J. Wang, D. He, Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers, Chemosphere, 144 (2016) 855–863.
  5. X. Hu, Z. Cheng, Z. Sun, H. Zhu, Adsorption of diclofenac and triclosan in aqueous solution by purified multi-walled carbon nanotubes, Pol. J. Environ. Stud., 26 (2017) 87–95.
  6. J. López-Morales, O. Perales-Pérez, F. Román-Velázquez, Sorption of triclosan onto tyre crumb rubber, Adsorpt. Sci. Technol., 30 (2012) 831–845.
  7. A.B. Dann, A. Hontela, Triclosan: environmental exposure, toxicity and mechanisms of action, J. Appl. Toxicol., 31 (2011) 285–311.
  8. S. Liu, R. Xu, Adsorption characteristics of triclosan on chitosan/ poly(vinyl alcohol) composite nanofibrous membranes, Appl. Mech. Mater., 448–453 (2014) 134–138.
  9. J.C. Carlson, M.I. Stefan, J.M. Parnis, C.D. Metcalfe, Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution, Water Res., 84 (2015) 350–361.
  10. C. Zhao, H. Xie, J. Xu, X. Xu, J. Zhang, Z. Hu, C. Liu, S. Liang, Q. Wang, J. Wang, Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants, Sci. Total Environ., 505 (2015) 633–639.
  11. R. Xu, Y. Si, X. Wu, F. Li, B. Zhang, Triclosan removal by laccase immobilized on mesoporous nanofibers: strong adsorption and efficient degradation, Chem. Eng. J., 255 (2014) 63–70.
  12. S. Wang, X. Wang, K. Poon, Y. Wang, S. Li, H. Liu, S. Lin, Z. Cai, Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa, Chemosphere, 92 (2013) 1498–1505.
  13. B. Ertit Taştan, G. Dönmez, Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media, Pestic. Biochem. Physiol., 118 (2015) 33–37.
  14. Y.-Z. Ren, M. Franke, F. Anschuetz, B. Ondruschka, A. Ignaszak, P. Braeutigam, Sonoelectrochemical degradation of triclosan in water, Ultrason. Sonochem., 21 (2014) 2020–2025.
  15. J. Chen, R. Qu, X. Pan, Z. Wang, Oxidative degradation of triclosan by potassium permanganate: kinetics, degradation products, reaction mechanism, and toxicity evaluation, Water Res., 103 (2016) 215–223.
  16. N.K.E. Mohd Khori, T. Hadibarata, M.S. Elshikh, A. Ahmed Al-Ghamdi, S. Salmiati, Z. Yusop, Triclosan removal by adsorption using activated carbon derived from waste biomass: isotherms and kinetic studies, J. Chin. Chem. Soc., 65 (2018) 951–959.
  17. S.K. Behera, S.-Y. Oh, H.-S. Park, Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid, J. Hazard. Mater., 179 (2010) 684–691.
  18. N.A. Rahmat, A.A. Ali, Salmiati, N. Hussain, M.S. Muhamad, R.A. Kristanti, T. Hadibarata, Removal of Remazol brilliant blue R from aqueous solution by adsorption using pineapple leaf powder and lime peel powder, Water Air Soil Pollut., 227 (2016) 105.
  19. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon, Colloids Surf., A, 318 (2008) 88–96.
  20. T.S.Y. Choong, T.N. Wong, T.G. Chuah, A. Idris, Film-poreconcentration- dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon, J. Colloid Interface Sci., 301 (2006) 436–440.
  21. A.R. Hidayu, N. Muda, Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture, Procedia Eng., 148 (2016) 106–113.
  22. M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as lowcost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res., 50 (2011) 13589–13613.
  23. Y. Zhou, L. Zhang, Z. Cheng, Removal of organic pollutants from aqueous solution using agricultural wastes: a review, J. Mol. Liq., 212 (2015) 739–762.
  24. S. Yi, B. Gao, Y. Sun, J. Wu, X. Shi, B. Wu, X. Hu, Removal of levofloxacin from aqueous solution using rice-husk and woodchip biochars, Chemosphere, 150 (2016) 694–701.
  25. E.A. Abigail M., R. Chidambaram, Rice husk as a low cost nanosorbent for 2,4-dichlorophenoxyacetic acid removal from aqueous solutions, Ecol. Eng., 92 (2016) 97–105.
  26. L. Shi, X. Zho, S. Zhou, Z. Yalei, Adsorption Isotherm and Thermodynamic of Triclosan on Activated Sludge, 2011 International Conference on Electric Technology and Civil Engineering, Lushan, China, 2011, pp. 975–978.
  27. A.A. Sharipova, S.B. Aidarova, N.E. Bekturganova, A. Tleuova, M. Schenderlein, O. Lygina, S. Lyubchik, R. Miller, Triclosan as model system for the adsorption on recycled adsorbent materials, Colloids Surf., A, 505 (2016) 193–196.
  28. S.B. Daffalla, H. Mukhtar, M.S. Shaharun, Characterization of adsorbent developed from rice husk: effect of surface functional group on phenol adsorption, J. Appl. Sci., 10 (2010) 1060–1067.
  29. M.C. Hoyos-Sánchez, A.C. Córdoba-Pacheco, L.F. Rodríguez- Herrera, R. Uribe-Kaffure, Removal of Cd(II) from aqueous media by adsorption onto chemically and thermally treated rice husk, J. Chem., 2017 (2017) 1–8.
  30. H. Kaur, A. Bansiwal, G. Hippargi, G.R. Pophali, Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: adsorption isotherms, kinetics and mechanism, Environ. Sci. Pollut. Res., 25 (2018) 20473–20485.
  31. R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez, Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product, Chem. Eng. J., 211–212 (2012) 310–317.
  32. W.W. Simons, The Sadtler Handbook of Infrared Spectra, S.R. Laboratories, Sadtler, 1978.
  33. J. Tang, H. Lv, Y. Gong, Y. Huang, Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal, Bioresour. Technol., 196 (2015) 355–363.
  34. J. Coates, Interpretation of Infrared Spectra, A Practical Approach, R.A. Meyers, Ed., Encyclopedia of Analytical Chemistry, John Wiley & Sons, Chichester, 2006, pp. 1–23.
  35. S. Abrishamkesh, M. Gorji, H. Asadi, G. Bagheri-Marandi, A. Pourbabaee, Effects of rice husk biochar application on the properties of alkaline soil and lentil growth, Plant Soil Environ., 61 (2015) 475–482.
  36. D. Lin, B. Xing, Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups, Environ. Sci. Technol., 42 (2008) 7254–7259.
  37. H.-H. Cho, H. Huang, K. Schwab, Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes, Langmuir, 27 (2011) 12960–12967.
  38. Y. Liu, X. Zhu, F. Qian, S. Zhang, J. Chen, Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal, RSC Adv., 4 (2014) 63620–63626.
  39. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  40. A. Ergene, K. Ada, S. Tan, H. Katırcıoğlu, Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: equilibrium and kinetic modeling studies, Desalination, 249 (2009) 1308–1314.
  41. X. Guo, F. Chen, Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater, Environ. Sci. Technol., 39 (2005) 6808–6818.
  42. S. Zhou, Y. Shao, N. Gao, J. Deng, C. Tan, Equilibrium, kinetic, and thermodynamic studies on the adsorption of triclosan onto multi-walled carbon nanotubes, Clean Soil Air Water, 41 (2013) 539–547.
  43. American Water Works Association, J.K. Edzwald, Water Quality & Treatment: A Handbook on Drinking Water, 6th ed., McGraw-Hill Education, New York, NY, 2011.
  44. D. Duranoğlu, A.W. Trochimczuk, U. Beker, Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer, Chem. Eng. J., 187 (2012) 193–202.
  45. D.P. Mungasavalli, T. Viraraghavan, Y.-C. Jin, Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies, Colloids Surf., A, 301 (2007) 214–223.
  46. A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind., 15 (2016) 14–27.
  47. M.M.S. Saif, N.S. Kumar, M.N.V. Prasad, Binding of cadmium to Strychnos potatorum seed proteins in aqueous solution: adsorption kinetics and relevance to water purification, Colloids Surf., B, 94 (2012) 73–79.
  48. H. Gao, J. Chen, Y. Zhang, X. Zhou, Sulfate radicals induced degradation of triclosan in thermally activated persulfate system, Chem. Eng. J., 306 (2016) 522–530.