References

  1. M. Shafiq, A.A. Alazba, M.T. Amin, Synthesis, characterization, and application of date palm leaf waste-derived biochar to remove cadmium and hazardous cationic dyes from synthetic wastewater, Arabian J. Geosci., 12 (2019) 63.
  2. N. Tara, M. Iqbal, Q.M. Khan, M. Afzal, Bioaugmentation of floating treatment wetlands for the remediation of textile effluent, Water Environ. J., 33 (2019) 124–134.
  3. S. Cotillas, J. Llanos, P. Cañizares, D. Clematis, G. Cerisola, M.A. Rodrigo, M. Panizza, Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation, Electrochim. Acta, 263 (2018) 1–7.
  4. I. Qadir, R.C. Chhipa, Comparative studies of some physicochemical characteristics of raw water and effluents of textile industries of Sitapura, Jaipur, Int. J. Adv. Res., 3 (2015) 2444–2449.
  5. R. Acharya, B. Naik, K. Parida, Chapter 10 – Visible‐Light‐ Induced Photocatalytic Degradation of Textile Dyes Over Plasmonic Silver‐Modified TiO2, S. ul‐Islam, B.S. Butola, Ed., Advanced Textile Engineering Materials, Scrivener Publishing LLC, United States, 2018, pp. 389–418.
  6. S. Sangon, A.J. Hunt, T.M. Attard, P. Mengchang, Y. Ngernyen, N. Supanchaiyamat, Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal, J. Cleaner Prod., 172 (2018) 1128–1139.
  7. F. Javed, N. Feroze, A. Ikhlaq, M. Kazmi, S.W. Ahmad, H.M.S. Munir, Biosorption potential of Sapindus mukorossi dead leaves as a novel biosorbent for the treatment of Reactive Red 241 in aqueous solution, Desal. Water Treat., 137 (2019) 345–357.
  8. S. Chowdhury, K.G. Bhattacharyya, Use of Cu(II)-incorporated zeolite Y for decolourization of dyes in water: a case study with aqueous methylene blue and Congo red, SN Appl. Sci., 1 (2019) 87.
  9. A. Ikhlaq, H.Z. Anwar, F. Javed, S. Gull, Degradation of safranin by heterogeneous Fenton processes using peanut shell ash based catalyst, Water Sci. Technol., 79 (2019) 1367–1375.
  10. A. Ikhlaq, M. Kazim, F. Javed, K.S. Joya, F. Anwar, Combined catalytic ozonation and electroflocculation process for the removal of basic yellow 28 in wastewater, Desal. Water Treat., 127 (2018) 354–363.
  11. S. Mishra, P. Chowdhary, R.N. Bharagava, Chapter 1 – Conventional Methods for the Removal of Industrial Pollutants, Their Merits and Demerits, R.N. Bharagava, P. Chowdhary, Eds., Emerging and Eco-Friendly Approaches for Waste Management, Springer Nature Singapore Pte Ltd., Singapore, 2019, pp. 1–31.
  12. M.C. Collivignarelli, A. Abbà, M.C. Miino, S. Damiani, Treatments for color removal from wastewater: state of the art, J. Environ. Manage., 236 (2019) 727–745.
  13. A. Ikhlaq, T. Aslam, A.M. Zafar, F. Javed, H.M.S. Munir, Combined ozonation and adsorption system for the removal of heavy metals from municipal wastewater: effect of COD removal, Desal. Water Treat., 159 (2019) 304–309.
  14. A. Ikhlaq, F. Javed, M.S. Munir, S. Hussain, K.S. Joya, A.M. Zafar, Application of heterogeneous iron loaded zeolite A catalyst in photo-Fenton process for the removal of safranin in wastewater, Desal. Water Treat., 148 (2019) 152–161.
  15. A. Ikhlaq, H.M.S. Munir, A. Khan, F. Javed, K.S. Joya, Comparative study of catalytic ozonation and Fenton-like processes using iron-loaded rice husk ash as catalyst for the removal of methylene blue in wastewater, Ozone Sci. Eng., 41 (2019) 250–260.
  16. M.A. Oturan, J.-J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
  17. M. Brienza, I.A. Katsoyiannis, Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater, Sustainability, 9 (2017) 1604.
  18. E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fernández- González, Advanced oxidation processes for the removal of antibiotics from water, An overview, Water, 12 (2020) 102.
  19. F. Javed, N. Feroze, N. Ramzan, A. Ikhlaq, M. Kazmi, H.M.S. Munir, Treatment of Reactive Red 241 dye by electro coagulation/biosorption coupled process in a new hybrid reactor, Desal. Water Treat., 166 (2019) 83–91.
  20. N.N. Liu, Y.H. Wu, Removal of methylene blue by electrocoagulation: a study of the effect of operational parameters and mechanism, Ionics, 25 (2019) 3953–3960.
  21. E.V. Vidya Vijay, M. Jerold, M.S. Ramya Sankar, S. Lakshmanan, V. Sivasubramanian, Electrocoagulation using commercial grade aluminium electrode for the removal of crystal violet from aqueous solution, Water Sci. Technol., 79 (2019) 597–606.
  22. E. Bazrafshan, M.R. Alipour, A.H. Mahvi, Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes, Desal. Water Treat., 57 (2016) 9203–9215
  23. F. Deniz, R. Aysun Kepekci, Dye biosorption onto pistachio by-product: a green environmental engineering approach, J. Mol. Liq., 219 (2016) 194–200.
  24. M.S. Khalili, K. Zare, O. Moradi, M. Sillanpää, Preparation and characterization of MWCNT–COOH–cellulose–MgO NP nanocomposite as adsorbent for removal of methylene blue from aqueous solutions: isotherm, thermodynamic and kinetic studies, J. Nanostruct. Chem., 8 (2018) 103–121.
  25. C.H.C. Tan, S. Sabar, M.H. Hussin, Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal, S. Afr. J. Chem. Eng., 26 (2018) 11–24.
  26. R.D.S. Bezerra, R.C. Leal, M.S. da Silva, A.I.S. Morais, T.H.C. Marques, J.A. Osajima, A.B. Meneguin, H. da S. Barud, E.C. da Silva Filho, Direct modification of microcrystalline cellulose with ethylenediamine for use as adsorbent for removal amitriptyline drug from environment, Molecules, 22 (2017) 2039.
  27. Z.N. Garba, I. Lawan, W.M. Zhou, M.X. Zhang, L.W. Wang, Z.H. Yuan, Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals – a review, Sci. Total Environ., 717 (2020) 135070.
  28. R.D. Kale, T. Potdar, V. Gorade, Treatment of C.I. Reactive Blue-21 effluent by microcrystalline cellulose grafted with APTES: kinetics, isotherm and thermodynamic study, Sustainable Environ. Res., 29 (2019), https://doi.org/10.1186/ s42834-019-0007-6.
  29. H.P. de Carvalho, J.G. Huang, J.H. Ni, M.X. Zhao, X.Y. Yang, X.S. Wang, Removal of Acid Black 1 and Basic Red 2 from aqueous solutions by electrocoagulation/Moringa oleifera seed adsorption coupling in a batch system, Water Sci. Technol., 72 (2015) 203–213.
  30. H.P. Yang, R. Yan, H.P. Chen, D.H. Lee, C.G. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86 (2007) 1781–1788.
  31. X.S. Wang, J.H. Ni, S. Pang, Y. Li, Removal of malachite green from aqueous solutions by electrocoagulation/peanut shell adsorption coupling in a batch system, Water Sci. Technol., 75 (2017) 1830–1838.
  32. M.A. Sadik, Removal of reactive dye from textile mill wastewater by leading electro-coagulation process using aluminum as a sacrificial anode, Adv. Chem. Eng. Sci., 9 (2019) 182–193.
  33. Z. Gündüz, M. Atabey, Effects of operational parameters on the decolourisation of Reactive Red 195 dye from aqueous solutions by electrochemical treatment, Int. J. Electrochem. Sci., 14 (2019) 5868–5885.
  34. R. Khosravi, S. Hazrati, M. Fazlzadeh, Decolorization of AR18 dye solution by electrocoagulation: sludge production and electrode loss in different current densities, Desal. Water Treat., 57 (2016) 14656–14664.
  35. M. Khedher, M. Mossad, H.K. El-Etriby, Enhancement of electrocoagulation process for dye removal using powdered residuals from water purification plants (PRWPP), Water Air Soil Pollut., 228 (2017), https://doi.org/10.1007/s11270-017-3478-2.
  36. C. Ricordel, C. Miramon, D. Hadjiev, A. Darchen, Investigations of the mechanism and efficiency of bacteria abatement during electrocoagulation using aluminum electrode, Desal. Water Treat., 52 (2014) 5380–5389.
  37. S.O. Giwa, K. Polat, H. Hapoglu, The effects of operating parameters on temperature and electrode dissolution in electrocoagulation treatment of petrochemical wastewater, Int. J. Eng. Res. Technol., 1 (2012) s10366.
  38. T.S.A. Singh, S. Thanga Ramesh, New trends in electrocoagulation for the removal of dyes from wastewater: a review, Environ. Eng. Sci., 30 (2013), https://doi.org/10.1089/ ees.2012.0417.
  39. H.P. de Carvalho, J.G. Huang, M.X. Zhao, G. Liu, L.L. Dong, X.J. Liu, Improvement of Methylene Blue removal by electrocoagulation/ banana peel adsorption coupling in a batch system, Alexandria Eng. J., 54 (2015) 777–786.
  40. K. Vinothkumar, T. Sugumaran, S. Venkateshwari, Electrocoagulation coupled with adsorption for effective removal of eosin yellow and nigrosin dyes in aqueous solution, J. Appl. Nat. Sci., 11 (2019) 97–106.
  41. S.I. Suárez-Vázquez, J.A. Vidales-Contreras, J.M. Márquez- Reyes, A. Cruz-López, C. García-Gómez, Removal of congo red dye using electrocoagulated metal hydroxide in a fixed-bed column: characterization, optimization and modeling studies, Rev. Mex. Ing. Chim., 18 (2019) 1133–1142.
  42. P. Sakthisharmila, P.N. Palanisamy, P. Manikandan, Removal of benzidine based textile dye using different metal hydroxides generated in situ electrochemical treatment—a comparative study, J. Cleaner Prod., 172 (2018) 2206–2215.
  43. M. Elazzouzi, A. El Kasmi, K. Haboubi, M.S. Elyoubi, A novel electrocoagulation process using insulated edges of Al electrodes for enhancement of urban wastewater treatment: techno-economic study, Process Saf. Environ. Prot., 116 (2018) 506–515.