References

  1. G.Z. Zha, C.F. Yang, Y.K. Wang, X.Y. Guo, W.L. Jiang, B. Yang, New vacuum distillation technology for separating and recovering valuable metals from a high value-added waste, Sep. Purif. Technol., 209 (2019) 863–869.
  2. R.S. Silver, Multi-stage flash distillation. The first 10 years, Desalination, 9 (1971) 3–17.
  3. O.A. Hamed, M.Ak. Al-Sofi, M. Imam, G.M. Mustafa, K. Bamardouf, H. Al-Washmi, Simulation of multistage flash desalination process, Desalination, 134 (2001) 195–203.
  4. I.G. Wenten, Khoiruddin, Reverse osmosis applications: prospect and challenges, Desalination, 391 (2016) 112–125.
  5. K.H. Park, J.B. Kim, D.R. Yang, S.W. Hong, Towards a lowenergy seawater reverse osmosis desalination plant: a review and theoretical analysis for future directions, J. Membr. Sci., 595 (2020) 117607, https://doi.org/10.1016/j.memsci.2019.117607.
  6. Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications, 2nd ed., Elsevier B.V., Amsterdam, 2015.
  7. G.N. Tiwari, L. Sahota, Advanced Solar-Distillation Systems: Basic Principles, Thermal Modeling, and Its Application, 1st ed., Springer, Singapore, 2017.
  8. R. Balan, J. Chandrasekaran, S. Shanmugan, B. Janarthanan, S. Kumar, Review on passive solar distillation, Desal. Water Treat., 28 (2011) 217–238.
  9. G.N. Tiwari, A. Tiwari, Shyam, Handbook of Solar Energy: Theory, Analysis and Applications, Springer, Singapore, 2016.
  10. H.K. Jani, K.V. Modi, A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices, Renewable Sustainable Energy Rev., 93 (2018) 302–317.
  11. H.K. Jani, K.V. Modi, Experimental performance evaluation of single basin dual slope solar still with circular and square crosssectional hollow fins, Sol. Energy, 179 (2019) 186–194.
  12. H.U. Helvacı, G.G. Akkurt, Thermodynamic Performance Evaluation of a Geothermal Drying System, I. Dincer, A. Midilli, H. Kucuk, Eds., Progress in Exergy, Energy, and the Environment, Springer, Cham, 2014.
  13. J. Szargut, Exergy Method: Technical and Ecological Applications: Technical and Ecological Applications, International Series on Developments in Heat Transfer, Vol. 18, WIT Press, United Kingdom, 2005, p. 164.
  14. V.G. Gude, Use of exergy tools in renewable energy driven desalination systems, Therm. Sci. Eng. Progr., 8 (2018) 154–170.
  15. V.G. Gude, N. Nirmalakhandan, Desalination using low-grade heat sources, J. Energy Eng., 134 (2008) 95–101.
  16. V.G. Gude, N. Nirmalakhandan, S. Deng, A. Maganti, Desalination at low temperatures: an exergy analysis, Desal. Water Treat., 40 (2018) 272–281.
  17. K.R. Ranjan, S.C. Kaushik, Energy, exergy and thermo-economic analysis of solar distillation systems: a review, Renewable Sustainable Energy Rev., 27 (2013) 709–723.
  18. R. Kant, O. Prakash, R. Tripathi, A. Kumar, Exergy Analysis of Active and Passive Solar Still, A. Kumar, O. Prakash, Eds., Solar Desalination Technology, 1st ed., Springer Nature, Singapore, 2019, pp. 261–273.
  19. A. Bejan, Advanced Engineering Thermodynamics, 4th ed., John Wiley & Sons Inc., New Jersey, 2016.
  20. S. Vaithilingam, G.S. Esakkimuthu, Energy and exergy analysis of single slope passive solar still: an experimental investigation, Desal. Water Treat., 55 (2015) 1433–1444.
  21. A.F. Mohamed, A.A. Hegazi, G.I. Sultan, E.M.S. El-Said, Augmented heat and mass transfer effect on performance of a solar still using porous absorber: experimental investigation and exergetic analysis, Appl. Therm. Eng., 150 (2019) 1206–1215.
  22. E. Hedayati-Mehdiabadi, F. Sarhaddi, F. Sobhnamayan, Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and PV/T collector, Renewable Energy, 145 (2020) 2409–2425.
  23. H. Aghaei Zoori, F. Farshchi Tabrizi, F. Sarhaddi, F. Heshmatnezhad, Comparison between energy and exergy efficiencies in a weir type cascade solar still, Desalination, 325 (2013) 113–121.
  24. S. Nazari, H. Safarzadeh, M. Bahiraei, Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid, Renewable Energy, 135 (2019) 729–744.
  25. S.W. Sharshir, A.H. Elsheikh, G.L. Peng, N. Yang, M.O.A. El- Samadony, A.E. Kabeel, Thermal performance and exergy analysis of solar stills – a review, Renewable Sustainable Energy Rev., 73 (2017) 521–544.
  26. S.W. Sharshir, G.L. Peng, A.H. Elsheikh, E.M.A. Edreis, M.A. Eltawil, T. Abdelhamid, A.E. Kabeel, J.F. Zang, N. Yang, Energy and exergy analysis of solar stills with micro/nano particles: a comparative study, Energy Convers. Manage., 177 (2018) 363–375.
  27. E. Shanazari, R. Kalbasi, Improving performance of an inverted absorber multi-effect solar still by applying exergy analysis, Appl. Therm. Eng., 143 (2018) 1–10.
  28. M.S. Yousef, H. Hassan, Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: a comparative study, Sol. Energy, 182 (2019) 316–331.
  29. A.L.S. Chávez, H. Terres, A. Lizardi, R. López, Preface: international conference on recent trends in physics (ICRTP 2016), J. Phys. Conf. Ser., 729 (2017) 012009.
  30. M. Neri, D. Luscietti, M. Pilotelli, Computing the exergy of solar radiation from real radiation data, J. Energy Resour. Technol., 139 (2017) 061201.
  31. M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of Engineering Thermodynamics, 9th ed., Wiley, USA, 2018.
  32. G.N. Tiwari, Solar Energy: Fundamentals, Design, Modelling and Application, Narosa Publication, New Delhi, India, 2002.
  33. R.G. Singh, G.N. Tiwari, Simulation performance of single slope solar still by using iteration method for convective heat transfer coefficient, Groundwater Sustainable Dev., 10 (2020) 100287.
  34. J.C. Torchia-Núñez, M.A. Porta-Gándara, J.G. Cervantes-de Gortari, Exergy analysis of a passive solar still, Renewable Energy, 33 (2008) 608–616.
  35. A. Layek, Exergetic analysis of basin type solar still, Eng. Sci. Technol. Int. J., 21 (2018) 99–106.
  36. S.M. Elshamy, E.M.S. El-Said, Comparative study based on thermal, exergetic and economic analyses of a tubular solar still with semi-circular corrugated absorber, J. Cleaner Prod., 195 (2018) 328–339.