References

  1. F.A. Peuser, K.-H. Remmers, M. Schnauss, Solar Thermal Systems: Successful Planning and Construction, Routledge Taylor & Francis Group, London, U.K., 2013.
  2. I. Horuz, B. Kurt, Absorption heat transformers and an industrial application, Renewable Energy, 35 (2010) 2175–2181.
  3. G. Jones, L. Bouamane, “Power from Sunshine”: A Business History of Solar Energy, Harvard Business School, Working Paper Series, Cambridge, Massachusetts, U.S.A., 2012.
  4. C. Ramos-Berúmen, J.R. Ramírez-Benítez, J. Beltrán-Adán, Aplicaciones térmicas de la energía solar, en los sectores residencial, servicios e industrial (pág. 101), Instituto de Energías Renovables-Universidad Nacional Autónoma de México (IER-UNAM), Ciudad de México, 2017.
  5. S.S. Sahoo, S. Singh, R. Banerjee, Steady state hydrothermal analysis of the absorber tubes used in Linear Fresnel Reflector solar thermal system, Solar Energy, 87 (2013) 84–95.
  6. C. Xi, H.X. Yang, L. Lu, J.G. Wang, W. Liu, Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating, Energy, 36 (2011) 5292–5300.
  7. L.M. Ayompe, A. Duffy, Analysis of the thermal performance of a solar water heating system with flat plate collectors in a temperate climate, Appl. Therm. Eng., 58 (2013) 447–454.
  8. Z. Said, R. Saidur, N.A. Rahim, M.A. Alim, Analyses of exergy efficiency and pumping power for a conventional flat-plate solar collector using SWCNTs based nanofluid, Energy Build., 78 (2014) 1–9.
  9. S.S. Meibodi, A. Kianifar, H. Niazmand, O. Mahian, S. Wongwises, Experimental investigation on the thermal efficiency and performance characteristics of a flat-plate solar collector using SiO2/EG–water nanofluids, Int. Commun. Heat Mass Transfer, 65 (2015) 71–75.
  10. C. Koroneos, G. Roumbas, Geothermal waters heat integration for the desalination of sea water, Desal. Water Treat., 37 (2012) 69–76.
  11. N. Demesa, J.A. Hernández, J. Siqueiros, J.C. Garcia, A. Huicochea, Improvement of the performance of an absorption heat transformer through a single effect process to obtain freshwater, Appl. Therm. Eng., 78 (2015) 162–171.
  12. R.A. Huicochea, Puesta en marcha y evaluación experimental de un sistema portátil de purificación de agua integrado a un transformador de calor, Tesis de Maestría, Centro Nacional de Investigación y Desarrollo Tecnológico, México, 2004.
  13. D.T. Torres, Evaluación experimental de un transformador de calor utilizando Carrol-Agua, Tesis de Licenciatura, (CIICAP) Universidad Autónoma del Estado de Morelos, México, 2009.
  14. R.J. Romero, Estudio de las mezclas bromuro de litio – agua y CarrolTM – agua en transformadores de calor por absorción de una etapa, Tesis de Maestría, Laboratorio de Energía Solar, UNAM, México, 1996.
  15. R.M.B. Reyes, V.M.A. Gómez, A. García-Gutiérrez, Performance modelling of single and double absorption heat transformers, Curr. Appl. Phys., 10 (2010) S244–S248.
  16. W. Rivera, A. Huicochea, H. Martínez, J. Siqueiros, D. Juárez, E. Cadenas, Exergy analysis of an experimental heat transformer for water purification, Energy, 36 (2011) 320–327.
  17. R.J. Romero, W. Rivera, I. Pilatowsky, R. Best, Comparison of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hydroxide and with water/lithium bromide, Sol. Energy Mater. Sol. Cells, 70 (2001) 301–308.
  18. G.A. Florides, S.A. Kalogirou, S.A. Tassou, L.C. Wrobel, Design and construction of a LiBr–water absorption machine, Energy Convers. Manage., 44 (2003) 2483–2508.
  19. W. Rivera, R.J. Romero, Evaluation of a heat transformer powered by a solar pond, Sol. Energy Mater. Sol. Cells, 63 (2000) 413–422.
  20. F. Salata, M. Coppi, A first approach study on the desalination of sea water using heat transformers powered by solar ponds, Appl. Energy, 136 (2014) 611–618.
  21. L.B. Wang, X.B. Bu, H.Z. Wang, Z.T. Ma, W.B. Ma, H.S. Li, Thermoeconomic evaluation and optimization of LiBr-H2O double absorption heat transformer driven by flat plate collector, Energy Convers. Manage., 162 (2018) 66–76.
  22. A.H. Hernández Soria, Estudio experimental de un sistema para purificación de agua acoplado a un transformador de calor usando la mezcla carrol-agua, Tesis de Maestría, (CIICAP) Universidad Autónoma del Estado de Morelos, México, 2011.
  23. J.A. Manrique, Energía solar: fundamentos y aplicaciones fototérmicas (No. 621.47 M3), Ed. Harla, Mexico, 1984.
  24. H.W. Coleman, W.G. Steele Jr., Experimentation, Validation, and Uncertainty Analysis for Engineers, John Wiley & Sons, Inc., 2018.
  25. G.E. Dévora Isiordia, R. González Enríquez, S. Ruiz Cruz, Evaluation of desalination processes and their development in Mexico, Tecnología y Ciencias del Agua, 4 (2013) 27–46.
  26. CETENMA, Vigilancia tecnológica en energía y medio ambiente, Centro Tecnológico de la Energía y el Medio Ambiente, Sonora, Mexico, 2008. Available at: htpp://www.ctmedioambiente.es (accessed May 17, 2016).
  27. K.E. Herold, R. Radermacher, S.A. Klein, Absorption Chillers and Heat Pumps, CRC Press, Boca Raton, FL, U.S.A., 2016.
  28. C.C. Smith, T.A. Weiss, Design application of the Hottel- Whillier-Bliss equation, Solar Energy, 19 (1977) 109–113.
  29. R. Best, W. Rivera, M.J. Cardoso, R.J. Romero, F.A. Holland, Modelling of single-stage and advanced absorption heat transformers operating with the water/Carrol mixture, Appl. Therm. Eng., 17 (1997) 1111–1122.
  30. NOM 003-ENER-2011, Thermal Efficiency of Water Heaters for Domestic and Commercial Use, (Limits, Test Methods and Labeling that Provides a Methodology for Calculating the Solar System), Diario Oficial de la Federación, Tomo DCXCV, No. 7, Primera Sección, 28–43, August 9, 2011, Mexico City, Mexico, 2018.
  31. ASHRAE-93-1986/XAB, Method of Testing to Determine the Thermal Performance of Solar Collectors (ASHRAE Standard), American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (United States), 1986.
  32. REFPROP, Reference Fluid Thermodynamic and Transport Properties Database, National Institute of Standards and Technology (NIST), U.S. Department of Commerce, U.S.A., 2018.
  33. CONAGUA (Comisión Nacional del Agua; Data Provided by CONAGUA, May 23, 2017) Cuernavaca, Morelos, México.