References

  1. M. Ghosh, K. Manoli, X. Shen, J. Wang, A.K. Ray, Solar photocatalytic degradation of caffeine with titanium dioxide and zinc oxide nanoparticles, J. Photochem. Photobiol., A, 377 (2019) 1–7.
  2. S. Prabhu, S. Megala, S. Harish, M. Navaneethan, P. Maadeswaran, S. Sohila, R. Ramesh, Enhanced photocatalytic activities of ZnO dumbbell/reduced graphene oxide nanocomposites for degradation of organic pollutants via efficient charge separation pathway, Appl. Surf. Sci., 487 (2019) 1279–1288.
  3. R. Koutavarapu, B. Babu, C.V. Reddy, I.N. Reddy, K.R. Reddy, M.C. Rao, T.M. Aminabhavi, M. Cho, D. Kim, J. Shim, ZnO nanosheets-decorated Bi2WO6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation, J. Environ. Manage., 265 (2020) 110504, doi: 10.1016/j. jenvman.2020.110504.
  4. M.M. Mohamed, M.A. Ghanem, M. Khairy, E. Naguib, N.H. Alotaibi, Zinc oxide incorporated carbon nanotubes or graphene oxide nanohybrids for enhanced sonophotocatalytic degradation of methylene blue dye, Appl. Surf. Sci., 487 (2019) 539–549.
  5. M.A. Islam, I. Ali, S.M.A. Karim, M.S. Hossain Firoz, A.-N. Chowdhury, D.W. Morton, M.J. Angove, Removal of dye from polluted water using novel nano manganese oxidebased materials, J. Water Process Eng., 32 (2019), doi: 10.1016/j. jwpe.2019.100911.
  6. F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati- Niasari, NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment, RSC Adv., 4 (2014) 27654–27660.
  7. Y.-L. Ge, Y.-F. Zhang, Y. Yang, S. Xie, Y. Liu, T. Maruyama, Z.-Y. Deng, X. Zhao, Enhanced adsorption and catalytic degradation of organic dyes by nanometer iron oxide anchored to single-wall carbon nanotubes, Appl. Surf. Sci., 488 (2019) 813–826.
  8. I. Fatimah, S.N. Amaliah, M.F. Andrian, T.P. Handayani, R. Nurillahi, N.I. Prakoso, W.P. Wicaksono, L. Chuenchom, Iron oxide nanoparticles supported on biogenic silica derived from bamboo leaf ash for rhodamine B photodegradation, Sustainable Chem. Pharm., 13 (2019) 100149, doi: 10.1016/j.scp.2019.100149.
  9. P. Basavarajappa, B. Seethya, N. Ganganagappa, K. Eshwaraswamy, R. Kakarla, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles, ChemistrySelect, 3 (2018) 9025–9033.
  10. C. Ravi Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, B. Suji Benjamin, A. Moses Ezhil Raj, K. Jeyadheepan, C. Sanjeeviraja, Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles, Ceram. Int., 41 (2015) 9301–9313.
  11. R. Ranjith, V. Renganathan, S.-M. Chen, N.S. Selvan, P.S. Rajam, Green synthesis of reduced graphene oxide supported TiO2/Co3O4 nanocomposite for photocatalytic degradation of methylene blue and crystal violet, Ceram. Int., 45 (2019) 12926–12933.
  12. M. Harshiny, S. Aiswarya Devi, M. Matheswaran, Spiny amaranth leaf extract mediated iron oxide nanoparticles: biocidal photocatalytic propensity, stability, dissolubility and reusability, Biocatal. Agric., 21 (2019), doi: 10.1016/j.bcab.2019.101296.
  13. C.V. Reddy, I.N. Reddy, V.V.N. Harish, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles, Chemosphere, 239 (2020), doi: 10.1016/j. chemosphere.2019.124766.
  14. A. Fujishima, X. Zhang, D.A. Tryk, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup, Int. J. Hydrogen Energy, 32 (2007) 2664–2672.
  15. R. Reddy, C. Reddy, M. Nadagouda, N. Shetti, T. Aminabhavi, Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications, J. Environ. Manage., 238 (2019) 25–40, doi: 10.1016/j.jenvman.2019.02.075.
  16. Z. Maolin, S. Guoying, F. Jiamo, A. Taicheng, W. Xinming, H. Xiaohong, Novel preparation of nanosized ZnO–SnO2 with high photocatalytic activity by homogeneous co-precipitation method, Mater. Lett., 59 (2005) 3641–3644.
  17. S.B. Kokane, S.R. Suryawanshi, R. Sasikala, M.A. More, S.D. Sartale, Architecture of 3D ZnCo2O4 marigold flowers: influence of annealing on cold emission and photocatalytic behavior, Mater. Chem. Phys., 194 (2017) 55–64.
  18. S. Yousaf, T. Kousar, M.B. Taj, P.O. Agboola, I. Shakir, M.F. Warsi, Synthesis and characterization of double heterojunction-graphene nano-hybrids for photocatalytic applications, Ceram. Int., 45 (2019) 17806–17817.
  19. I. Ghaffar, M.F. Warsi, M. Shahid, I. Shakir, Unprecedented photocatalytic activity of carbon coated/MoO3 core–shell nanoheterostructurs under visible light irradiation, Physica E, 79 (2016) 1–7.
  20. N.L. Reddy, V.N. Rao, M. Vijayakumar, R. Santhosh, S. Anandan, M. Karthik, M.V. Shankar, K.R. Reddy, N.P. Shetti, M.N. Nadagouda, T.M. Aminabhavi, A review on frontiers in plasmonic nano-photocatalysts for hydrogen production, Int. J. Hydrogen Energy, 44 (2019) 10453–10472.
  21. R.K. Sharma, R. Ghose, Synthesis of Co3O4–ZnO mixed metal oxide nanoparticles by homogeneous precipitation method, J. Alloys Compd., 686 (2016) 64–73.
  22. W.S. Mohamed, A.M. Abu-Dief, Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles, J. Phys. Chem. Solids, 116 (2018) 375–385.
  23. K. Zafar, M. Aadil, M.N. Shahi, H. Sabeeh, M.F. Nazar, M. Iqbal, M.A. Yousuf, Physical, structural and dielectric parameters evaluation of new Mg1–xCoxNiyFe2–yO4 nano-ferrites synthesized via wet chemical approach, AAAFM Energy, 1 (2020) 36–44.
  24. S. Cho, K.-H. Lee, Formation of zinc aluminum mixed metal oxide nanostructures, J. Alloys Compd., 509 (2011) 8770–8778.
  25. I. Shakir, Z.A. Almutairi, Rational solution-assisted synthesis of copper sulfide nanoparticles for ultrahigh-rate electrochemical energy storage, AAAFM Energy, 1 (2020) 1–8.
  26. M.C. Toroker, D.K. Kanan, N. Alidoust, L.Y. Isseroff, P. Liao, E.A. Carter, First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes, Phys. Chem., 13 (2011) 16644–16654.
  27. M. Batzill, Fundamental aspects of surface engineering of transition metal oxide photocatalysts, Energy Environ. Sci., 4 (2011) 3275–3286.
  28. Q. Ni, J. Ma, C. Fan, Y. Kong, M. Peng, S. Komarneni, Spinel-type cobalt-manganese oxide catalyst for degradation of Orange II using a novel heterogeneous photo-chemical catalysis system, Ceram. Int., 44 (2018) 19474–19480.
  29. J. Singh, A. Rathi, M. Rawat, V. Kumar, K.-H. Kim, The effect of manganese doping on structural, optical, and photocatalytic activity of zinc oxide nanoparticles, Composites, Part B, 166 (2019) 361–370.
  30. H. Lee, Y.-K. Park, S.-J. Kim, B.-H. Kim, S.-C. Jung, Titanium dioxide modification with cobalt oxide nanoparticles for photocatalysis, J. Ind. Eng. Chem., 32 (2015) 259–263.
  31. U. Nwankwo, R. Bucher, A.B.C. Ekwealor, S. Khamlich, M. Maaza, F.I. Ezema, Synthesis and characterizations of rutile-TiO2 nanoparticles derived from chitin for potential photocatalytic applications, Vacuum, 161 (2019) 49–54.
  32. K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima, Nanofibrous TiO2-core/conjugated polymersheath composites: synthesis, structural properties and photocatalytic activity, J. Nanosci. Nanotechnol., 10 (2010) 7951–7957.
  33. X. Dong, X. Wang, J. Wang, H. Song, X. Li, L. Wang, M.B. Chan-Park, C.M. Li, P. Chen, Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode, Carbon, 50 (2012) 4865–4870.
  34. S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. Lewis Oscar, A. Pugazhendhi, Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation, J. Photochem. Photobiol., B, 192 (2019) 74–82.
  35. S. Haq, W. Rehman, M. Waseem, V. Meynen, S.U. Awan, S. Saeed, N. Iqbal, Fabrication of pure and moxifloxacin functionalized silver oxide nanoparticles for photocatalytic and antimicrobial activity, J. Photochem. Photobiol., B, 186 (2018) 116–124.
  36. M. Salavati-Niasari, Synthesis and characterization of host (nanodimensional pores of zeolite-Y)–guest [unsaturated 16-membered octaaza–macrocycle manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials, Chem. Lett., 34 (2005) 1444–1445.
  37. A. Bashiri Rezaie, M. Montazer, M. Mahmoudi Rad, Environmentally friendly low cost approach for nano copper oxide functionalization of cotton designed for antibacterial and photocatalytic applications, J. Cleaner Prod., 204 (2018) 425–436.
  38. P. Sangaiya, R. Jayaprakash, Tuning effect of Sn doping on structural, morphological, optical, electrical and photocatalytic properties of iron oxide nanoparticles, Mater. Sci. Semicond. Process, 85 (2018) 40–51.
  39. Z. Cao, M. Qin, Y. Gu, B. Jia, P. Chen, X. Qu, Synthesis and characterization of Sn-doped hematite as visible light photocatalyst, Mater. Res. Bull., 77 (2016) 41–47.
  40. I. Bibi, N. Nazar, M. Iqbal, S. Kamal, H. Nawaz, S. Nouren, Y. Safa, K. Jilani, M. Sultan, S. Ata, F. Rehman, M. Abbas, Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity, Adv. Powder Technol., 28 (2017) 2035–2043.
  41. J. Lu, H. Ali, J. Hurh, Y. Han, I. Batjikh, E.J. Rupa, G. Anandapadmanaban, J.K. Park, D.-C. Yang, The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method, Optik, 184 (2019) 82–89.
  42. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications, Mater. Sci. Semicond. Process, 32 (2015) 55–61.
  43. X. He, R. Büchel, R. Figi, Y. Zhang, Y. Bahk, J. Ma, J. Wang, Highperformance carbon/MnO2 micromotors and their applications for pollutant removal, Chemosphere, 219 (2019) 427–435.
  44. E. Darezereshki, Synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method at room temperature, Mater. Lett., 64 (2010) 1471–1472.
  45. M. Sugantha, P.A. Ramakrishnan, A.M. Hermann, C.P. Warmsingh, D.S. Ginley, Nanostructured MnO2 for Li batteries, Int. J. Hydrogen Energy, 28 (2003) 597–600.
  46. Z. Huang, Y. Zhao, H. Xu, J. Zhao, Surfactant-free synthesis, photocatalytic and electrochemical property study of Co3O4 nanoparticles, Mater. Res. Bull., 100 (2018) 83–90.
  47. D. Raoufi, Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method, Renewable Energy, 50 (2013) 932–937.
  48. S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang, A.A. Volinsky, Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation, Mater. Lett., 65 (2011) 1882–1884.
  49. C.-H. Wang, H.-C. Hsu, J.-H. Hu, High-energy asymmetric supercapacitor based on petal-shaped MnO2 nanosheet and carbon nanotube-embedded polyacrylonitrile-based carbon nanofiber working at 2 V in aqueous neutral electrolyte, J. Power Sources, 249 (2014) 1–8.
  50. M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry, S. Guermazi, Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method, Superlattices Microstruct., 85 (2015) 7–23.
  51. A.L. Patterson, The Scherrer formula for X-ray particle size determination, Phys. Rev. Mater., 56 (1939) 978–982.
  52. A. Khorsand Zak, W.H.A. Majid, M. Ebrahimizadeh Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson- Hall and size-strain plot methods, Solid State Sci., 13 (2011) 251–256.
  53. H. Namduri, S. Nasrazadani, Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry, Corros. Sci., 50 (2008) 2493–2497.
  54. Y.-S. Li, J.S. Church, A.L. Woodhead, Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications, J. Magn. Magn. Mater, 324 (2012) 1543–1550.
  55. A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method, Results Phys., 7 (2017) 3007–3015.
  56. A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3) nanoparticles by precipitation method: effect of varying the nature of precursor, Physica E, 97 (2018) 328–334.
  57. R.A. Bepari, P. Bharali, B.K. Das, Controlled synthesis of α- and γ-Fe2O3 nanoparticles via thermolysis of PVA gels and studies on α-Fe2O3 catalyzed styrene epoxidation, J. Saudi Chem. Soc., 21 (2017) S170–S178.
  58. D. Jaganyi, M. Altaf, I. Wekesa, Synthesis and characterization of whisker-shaped MnO2 nanostructure at room temperature, Appl. Nanosci., 3 (2013) 329–333.
  59. A.K.M.A. Ullah, A.K.M.F. Kibria, M. Akter, M.N.I. Khan, M.A. Maksud, R.A. Jahan, S.H. Firoz, Synthesis of Mn3O4 nanoparticles via a facile gel formation route and study of their phase and structural transformation with distinct surface morphology upon heat treatment, J. Saudi Chem. Soc., 21 (2017) 830–836.
  60. S. Vijayakumar, A.K. Ponnalagi, S. Nagamuthu, G. Muralidharan, Microwave assisted synthesis of Co3O4 nanoparticles for highperformance supercapacitors, Electrochim. Acta, 106 (2013) 500–505.
  61. K.A.M. Ahmed, K. Huang, Formation of Mn3O4 nanobelts through the solvothermal process and their photocatalytic property, Arabian J. Chem., 12 (2019) 429–439.
  62. M. Sajjad, I. Ullah, M.I. Khan, J. Khan, M.Y. Khan, M.T. Qureshi, Structural and optical properties of pure and copper doped zinc oxide nanoparticles, Results Phys., 9 (2018) 1301–1309.
  63. S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-doped ZnO nanoparticles: synthesis, structural and electrical properties, Physica B, 407 (2012) 1223–1226.
  64. A. Becheri, M. Dürr, P. Lo Nostro, P. Baglioni, Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers, J. Nanopart. Res., 10 (2008) 679–689.
  65. Q.-Y. Cai, J. Li, J. Ge, L. Zhang, Y.-L. Hu, Z.-H. Li, L.-B. Qu, A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots–MnO2 nanocomposites, Biosens. Bioelectron., 72 (2015) 31–36.
  66. W. Li, X.Y. Cui, R. Zeng, G. Du, Z. Sun, R. Zheng, S. Ringer, S. Dou, Performance modulation of α-MnO2 nanowires by crystal facet engineering, Sci. Rep., 5 (2015) 8987, doi: 10.1038/ srep08987.
  67. A.K. Zak, R. Razali, W.H.A. Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles, Int. J. Nanomed., 6 (2011) 1399–1403.
  68. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull., 3 (1968) 37–46.
  69. Z.-Y. Tian, N. Bahlawane, V. Vannier, K. Kohse-Höinghaus, Structure sensitivity of propene oxidation over Co-Mn spinels, Proc. Combust. Inst., 34 (2013) 2261–2268.
  70. G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods, J. Phys. Chem. C, 113 (2009) 4357–4361.
  71. N. Shaheen, M.A. Yousuf, I. Shakir, S. Zulfiqar, P.O. Agboola, M.F. Warsi, Wet chemical route synthesis of spinel oxide nanocatalysts for photocatalytic applications, Physica B, 580 (2020) 411820, doi: 10.1016/j.physb.2019.411820.
  72. M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems, Appl. Catal., 23 (1999) 89–114.
  73. C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, K. Yoo, Templatefree synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment, Electrochim. Acta, 317 (2019) 416–426.
  74. R. Abargues, J. Navarro, P.J. Rodríguez-Cantó, A. Maulu, J.F. Sánchez-Royo, J.P. Martínez-Pastor, Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach, Nanoscale, 11 (2019) 1978–1987.
  75. P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy, A.V. Raghu, C.V. Reddy, Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis, Int. J. Hydrogen Energy, 45 (2020) 7764–7778.
  76. L. Haroune, M. Salaun, A. Ménard, C.Y. Legault, J.-P. Bellenger, Photocatalytic degradation of carbamazepine and three derivatives using TiO2 and ZnO: effect of pH, ionic strength, and natural organic matter, Sci. Total Environ., 475 (2014) 16–22.
  77. T. Sauer, G. Cesconeto Neto, H.J. José, R.F.P.M. Moreira, Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor, J. Photochem. Photobiol., A, 149 (2002) 147–154.
  78. A. Alkaim, A. Aljeboree, N.A. Alrazaq, S. Jaafer, F. Hussein, A.J. Lilo, Effect of pH on Adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue, Chem. Asian J., 26 (2014) 8445–8448.