References

  1. H. Ben Mansour, O. Boughzala, D. Dridi, D. Barillier, L. Chekir-Ghedira, R. Mosrati, Textile dyes as sources of water contamination: screening for toxicity and treatment methods, J. Water. Sci., 24 (2011) 209–238.
  2. G.V. Brião, S.L. Jahn, E.L. Foletto, G.L. Dotto, Adsorption of crystal violet dye onto a mesoporous ZSM-5 zeolite synthetized using chitin as template, J. Colloid Interface Sci., 508 (2017) 313–322.
  3. T. Ngulube, J.R. Gumbo, V. Masindi, A. Maity, Calcined magnesite as an adsorbent for cationic and anionic dyes: characterization, adsorption parameters, isotherms and kinetics study, Heliyon, 4 (2018) 1–31, doi: 10.1016/j.heliyon.2018.e00838.
  4. Y.F. Tan, Removal of Triphenylmethane Dyes Using Pseudomonas Species, Bachelor of Science Biotechnology, University of Tunku Abdul Rahman, Malaysia, 2015
  5. S. Srivastava, R. Sinha, D. Roy, Toxicological effects of malachite green, Aquat. Toxicol., 66 (2004) 319–329.
  6. A.K. Srivastav, D. Roy, Acute toxicity of malachite green (triarylmethane dye) and pyceze (bronopol) on carbohydrate metabolism in the freshwater fish Heteropneustes fossilis (Bloch), Int. J. Fish. Aquat. Stud., 6 (2018) 27–30.
  7. S. Rangabhashiyam, S. Lata, P. Balasubramanian, Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent, Surf. Interfaces, 10 (2018) 197–215.
  8. H.A. Chanzu, J.M. Onyari, P.M. Shiundu, Brewers’ spent grain in adsorption of aqueous Congo Red and malachite Green dyes: batch and continuous flow systems, J. Hazard. Mater., 380 (2019) 1–8, doi: 10.1016/j.jhazmat.2019.120897.
  9. N.A.H.M. Zaidi, L.B.L. Lim, A. Usman, Enhancing adsorption of malachite green dye using base-modified Artocarpus odoratissimus leaves as adsorbents, Environ. Technol. Innovation, 13 (2019) 211–223.
  10. F. Mashkoor, A. Nasar, Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution, J. Mol. Liq., 274 (2019) 315–327.
  11. K. Vasanth Kumar, Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel, Dyes Pigm., 74 (2007) 595–597.
  12. S. Hajialigol, S. Masoum, Optimization of biosorption potential of nano biomass derived from walnut shell for the removal of Malachite Green from liquids solution: experimental design approaches, J. Mol. Liq., 286 (2019) 1–8, doi: 10.1016/j. molliq.2019.110904.
  13. F. Deniz, R.A. Kepekci, Bioremoval of Malachite green from water sample by forestry waste mixture as potential biosorbent, Microchem. J., 132 (2017) 172–178.
  14. A. Witek-Krowiak, Analysis of influence of process conditions on kinetics of malachite green biosorption onto beech sawdust, Chem. Eng. J., 171 (2011) 976–985.
  15. D.G. Vyavahare, G.R. Gurav, P.P. Jadhav, R.R. Patil, B.C. Aware, P.J. Jadhav, Response surface methodology optimization for sorption of Malachite Green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity, Chemosphere, 194 (2018) 306–315.
  16. C.A. Leon y Leon, L.R. Radovic, Interfacial chemistry and electrochemistry of carbon surfaces, Chem. Phys. Carbon, 24 (1994) 213–310.
  17. C. Moreno-Castilla, M.V. López-Romón, F. Carrasco-Marín, Change in surface chemistry of activated carbons by wet oxidation, Carbon, 38 (2000) 1995–2001.
  18. H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon, 40 (2002) 145–149.
  19. H.P. Boehm, Chemical identification of surface groups, Adv. Catal., 16 (1966) 179–274.
  20. C.A. Leon y Leon, J.M. Solar, V. Calemma, L.R. Radovic, Evidence for the protonation of basal plane sites on carbon, Carbon, 30 (1992) 797–811.
  21. I. Dincer, C. Ozgur Colpan, O. Kizilkan, M. Akif Ezan (Eds.), Progress in Clean Energy, Vol. 1, Analysis and Modeling, Springer International Publishing, Switzerland, 2015, pp. 623–630.
  22. M. Otero, F. Rozada, L.F. Calvo, A.I. García, A. Morán, Elimination of organic water pollutants using adsorbents obtained from sewage sludge, Dyes Pigm., 57 (2003) 55–65.
  23. Z. Aksu, A.B. Akın, Comparison of Remazol Black B biosorptive properties of live and treated activated sludge, Chem. Eng. J., 165 (2010) 184–193.
  24. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, Desalination, 225 (2008) 13–28.
  25. S. Chowdhury, P.D. Saha, Biosorption of methylene blue from aqueous solutions by a waste biomaterial: hen feathers, Appl. Water Sci., 2 (2012) 209–219.
  26. T.K. Roy, N.K. Mondal, Biosorption of Congo Red from aqueous solution onto burned root of Eichhornia crassipes biomass, Appl. Water Sci., 7 (2017) 1841–1854.
  27. A.A. Adeyi, S.N.A.M. Jamil, L.C. Abdullah, T.S.Y. Choong, Adsorption of Malachite Green dye from liquid phase using hydrophilic thiourea-modified poly(acrylonitrile-co-acrylic acid): kinetic and isotherm studies, J. Chem., 4 (2019) 1–14.
  28. A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arabian J. Chem., 10 (2017) S3381–S3393.
  29. E.K. Guechi, O. Hamdaoui, Sorption of malachite green from aqueous solution by potato peel: kinetics and equilibrium modeling using non-linear analysis method, Arabian J. Chem., 9 (2016) S416–S424.
  30. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies, J. Environ. Chem. Eng., 2 (2014) 1434–1444.
  31. I. Shah, R. Adnan, W.S. Wan Ngah, N. Mohamed, Iron impregnated activated carbon as an efficient adsorbent for the removal of methylene blue: regeneration and kinetics studies, PLoS One, 10 (2015) 1–23, doi: 10.1371/journal.pone.0122603.
  32. D. Suteu, T. Malutan, Industrial cellolignin wastes as adsorbent for removal of methylene blue dye from aqueous solutions, Bioressources, 8 (2013) 427–446.
  33. W.J. Weber, J.C. Morris, Advances in Water Pollution Research, Proceedings of International Conference on Water Pollution Symposium, Vol. 2, Pergamon, Oxford, 1962, pp. 231–266.
  34. N. Caner, I. Kiran, S. Ilhan, C.F. Iscen, Isotherm and kinetic studies of Burazol Blue ED dye biosorption by dried anaerobic sludge, J. Hazard. Mater., 165 (2009) 279–284.
  35. B.H. Hameed, M.I. El-Khaiary, Removal of basic dye from aqueous medium using a novel agricultural waste material: pumpkin seed hull, J. Hazard. Mater., 155 (2008) 601–609.
  36. H. Hafdi, M. Joudi, J. Mouldar, B. Hatimi, H. Nasrellah, M.A. El Mhammedi, M. Bakasse, Design of a new low cost natural phosphate doped by nickel oxide nanoparticles for capacitive adsorption of reactive red 141 azo dye, Environ. Res., 184 (2020) 1–14, doi: 10.1016/j.envres.2020.109322.
  37. S. Akbarnejad, A.A. Amooey, S. Ghasemi, High effective adsorption of acid fuchsin dye using magnetic biodegradable polymer-based nanocomposite from aqueous solutions, Microchem. J., 149 (2019) 1–12, doi: 10.1016/j.microc.2019.103966.
  38. S. Das, S. Mishra, Insight into the isotherm modelling, kinetic and thermodynamic exploration of iron adsorption from aqueous media by activated carbon developed from Limonia acidissima shell, Mater. Chem. Phys., 245 (2020) 1–20, doi: 10.1016/j.matchemphys.2020.122751.
  39. C.H. Giles, T.H. Mac Ewan, S.N. Nakhwa, D. Smith, A system of classification of solution adsorption isotherms, and its use diagnosis of adsorption mechanisms and in measurements of specific surface areas of solids, Studies in adsorption. Part XI, J. Chem. Soc., 10 (1960) 3973–3993.
  40. F. Edeline, The Physico-Chemical Purification, Theory and Technology of Water, 4th ed., Paris Lavoisier Tec & Doc impr, Cebedoc Sprl, Liège, 1998.
  41. G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes, M. Krimissa, Sorption isotherms: a review on physical bases, modeling and measurement, Appl. Geochem., 22 (2007) 249–275.
  42. R. Ramadoss, D. Subramaniam, Adsorption of chromium using blue green algae-modeling and application of various isotherms, Int. J. Chem. Technol., 10 (2018) 1–22.
  43. R. Saadi, Z. Saadi, R. Fazaeli, N. Elmi Fard, Monolayer and multilayer adsorption isotherm models for sorption from aqueous media, Korean J. Chem. Eng., 32 (2015) 787–799.
  44. Saruchi, V. Kumar, Adsorption kinetics and isotherms for the removal of Rhodamine B dye and Pb2+ ions from aqueous solutions by a hybrid ion-exchanger, Arabian J. Chem., 12 (2019) 316–329.
  45. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 1–11.
  46. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  47. H. Reza Ghaffari, H. Pasalari, A. Tajvar, K. Dindarloo, B.B. Goudarzi, V. Alipour, A. Ghanbarneajd, Linear and nonlinear two-parameter adsorption isotherm modeling: a case-study, Int. J. Eng. Sci., 6 (2017) 01–11.
  48. N.S. Yousef, R. Farouq, R. Hazzaa, Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ionexchange resin: application of two and three parameter isotherm models, Desal. Water Treat., 57 (2016) 21925–21934.
  49. A.A. Ahmad, B.H. Hameed, N. Aziz, Adsorption of direct dye on palm ash: kinetic and equilibrium modeling, J. Hazard. Mater., 141 (2007) 70–76.
  50. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Casuarina equisetifolia cone as sustainable adsorbent for removal of Malachite green dye from aqueous solution using batch experiment method, Moroccan J. Chem., 6 (2018) 480–491.
  51. L.B.L. Lim, N. Priyantha, N.H. Mohd Mansor, Utilizing Artocarpus altilis (breadfruit) skin for the removal of malachite green: isotherm, kinetics, regeneration, and column studies, Desal. Water Treat., 57 (2015) 16601–16610.
  52. A. Moosavi, A.A. Amooey, A.A. mir, M.H. Marzbali, Extraordinary adsorption of acidic fuchsine and malachite green onto cheap nano-adsorbent derived from eggshell, Chin. J. Chem. Eng., 28 (2020) 1591–1602.
  53. N.A.H. Mohamad Zaidi, L. Biaw Leng Lim, A. Usman, M.R. Rahimi Kooh, Efficient adsorption of malachite green dye using Artocarpus odoratissimus leaves with artificial neural network modelling, Desal. Water Treat., 101 (2018) 313–324.
  54. R. Ahmad, R. Kumar, Adsorption studies of hazardous malachite green onto treated ginger waste, J. Environ. Manage., 91 (2010) 1032–1038.
  55. S.D. Khattri, M.K. Singh, Removal of malachite green from dye wastewater using neem sawdust by adsorption, J. Hazard. Mater., 167 (2009) 1089–1094.
  56. B.H. Hameed, M.I. El-Khaiary, Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies, J. Hazard. Mater., 154 (2008) 237–244.
  57. P. Saha, S. Chowdhury, S. Gupta, I. Kumar, Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin, Chem. Eng. J., 165 (2010) 874–882.
  58. A. Mittal, Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers, J. Hazard. Mater., 133 (2006) 196–202.
  59. B.H. Hameed, M.I. El-Khaiary, Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modeling, J. Hazard. Mater., 159 (2008) 574–579.
  60. L.B.L. Lim, N. Priyantha, K.J. Mek, N.A.H. Mohamad Zaidi, Application of Momordica charantia (bitter gourd) waste for the removal of malachite green dye from aqueous solution, Desal. Water Treat., 154 (2019) 385–394.
  61. E. Bulut, M. Özacar, İ. Ayhan Şengil, Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design, Microporous Mesoporous Mater., 115 (2008) 234–246.