References

  1. A. Vengosh, Salinization and saline environment, Treatise Geochem., 9 (2003) 1–35.
  2. N. Gaaloul, L. Candela, A. Chebil, A. Soussi, K. Tamoh, Groundwater flow simulation at the Grombalia phreatic aquifer (Cap Bon, Northeastern Tunisia), Desal. Water Treat., 52 (2013) 1997–2008.
  3. N. Mokadem, B. Redhaounia, H. Besser, Y. Ayadi, F. Khelifi, A. Hamad, Y. Hamed, S. Bouri, Impact of climate change on groundwater and the extinction of ancient “Foggara” and springs systems in arid lands in North Africa: a case study in Gafsa basin (Central of Tunisia), Euro-Mediterr. J. Environ. Integr., 3 (2018) 28.
  4. N. Baghdadi, M. Zribi, Characterization of Soil Surface Properties Using Radar Remote Sensing. In: Land Surface Remote Sensing in Continental Hydrology, Elsevier, New York, 2016, pp. 1–39.
  5. B.C. Richter, C.W. Kreitler, Geochemical Techniques for Identifying Sources of Ground-Water Salinization, CRC Press, 1993, p. 272.
  6. K. Brindha, M. Schneider, Impact of Urbanization on Groundwater Quality, GIS and Geostatistical Techniques for Groundwater Science, 2019, pp. 179–196.
  7. J.L. Osiensky, Time series electrical potential field measurements for early detection of groundwater contamination, J. Environ. Sci. Health Part A, 30 (1995) 1601–1626.
  8. G.W. Hohmann, Numerical Modeling for Electromagnetic Methods of Geophysics, In: Electromagnetic Methods in Applied Geophysics, 1988, pp. 312–363.
  9. R. Aghlmand, A. Abbasi, Application of MODFLOW with boundary conditions analyses based on limited available observations: a case study of Birjand Plain in East Iran, Water, 11 (2019) 1904.
  10. G. Sindhu, Effect of pumping on groundwater levels: a case study, J. Inst. Eng. (India) Ser. A, 99 (2013) 369–437.
  11. A.N. Khondaker, R.I. Al‐Layla, T. Husain, Groundwater contamination studies ‐ the state‐of‐the‐art, Crit. Rev. Environ. Sci. Technol., 20 (1990) 231–256.
  12. E.S. Bair, A.E. Springer, G.S. Roadcap, Delineation of traveltimerelated capture areas of wells using analytical flow models and particle-tracking analysis, Groundwater, 29 (1991) 387–397.
  13. N.Z. Sun, Mathematical Modeling of Groundwater Pollution, Springer, New York, 1996.
  14. P.K. Majumdar, N.C. Ghosh, B. Chakravorty, Analysis of arsenic-contaminated groundwater domain in the Nadia district of West Bengal (India), Hydrol. Sci. J., 4 (2002) S55–S66.
  15. J.A. Izbicki, C.L. Stamos, T. Nishikawa, P. Martin, Comparison of ground-water flow model particle-tracking results and isotopic data in the Mojave River ground-water basin, southern California, USA, J. Hydrol., 292 (2004) 30–47.
  16. G. Kourakos, T. Harter, Vectorized simulation of groundwater flow and streamline transport, Environ. Modell. Software, 52 (2014) 207–221.
  17. E.S. Bair, Applied Groundwater Modeling-Simulation of Flow and Advective Transport, Groundwater, 54 (2016) 756–757.
  18. K.M. Ibrahim, A.R. El-Naqa, Inverse geochemical modeling of groundwater salinization in Azraq Basin, Jordan, Arab. J. Geosci., 11 (2018) 237.
  19. M.A. Sbai, A practical grid-based alternative method to advective particle tracking, Groundwater, (2018), doi:10.1111/ gwat.12646.
  20. X. Wu, J. Xia, C. Zhan, R. Jia, Y. Li, Y. Qiao, L. Zou, Modeling soil salinization at the downstream of a lowland reservoir, Hydrol. Res., (2019), doi:10.2166/nh.2019.041.
  21. Y. Bachmat, J. Bredehoeft, B. Andrews, D. Holtz, S. Sebastian, Groundwater Management: the Use of Numerical Models, Water Resources, Monograph: American Geophysical Union, 1980, p. 111.
  22. L.M. Abriola, Modeling contaminant transport in subsurface - an interdisciplinary challenge, Rev. Geophys., 25 (1987) 125.
  23. L.M. Abriola, Modeling multiphase migration of organic chemicals in groundwater systems-a review and assessment, Environ. Health Perspect., 83 (1989) 117–143.
  24. A.W. Harbaugh, MODFLOW-2005, the U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process, U.S. Geological Survey Techniques and Methods 6–A16, Reston, Virginia, USA, 2005.
  25. C. Muffels, L. Scantlebury, X. Wang, M.J. Tonkin, C. Neville, M. Ramadhan, J.R. Craig, User’s Guide for Mod-PATH3DU, A Groundwater Path and Travel-Time Simulator, S.S. Papadopulos & Associates, Bethesda, MD, 2018.
  26. M. Devi Nowbuth, P. Rambhojun, B. Umrikar, Numerical groundwater flow and contaminant transport modelling of the Southern Aquifer, Mauritius, Earth Sci. India, 5 (2012) 79–91.
  27. H. Banejad, H. Mohebzadeh, M.H. Ghobadi, M. Heydari, Numerical simulation of groundwater flow and contamination transport in Nahavand Plain aquifer, west of Iran, J. Geol. Soc. India, 83 (2014) 83–92.
  28. A.K. Chaudhry, K. Kamal, M.A. Alam, Spatial distribution of physico-chemical parameters for groundwater quality evaluation in a part of Satluj River Basin, India, Water Supply, 19 (2019) 1480–1490.
  29. M. Mirzavand, H. Ghasemieh, S.J. Sadatinejad, R. Bagheri, An overview on source, mechanism and investigation approaches in groundwater salinization studies, Int. J. Environ. Sci. Technol., (2020), doi:10.1007/s13762–020–02647–7.
  30. S. Sharma, J. Kaur, A.K. Nagpal, I. Kaur, Quantitative assessment of possible human health risk associated with consumption of arsenic-contaminated groundwater and wheat grains from Ropar Wetland and its environs, Environ. Monit. Assess., 188 (2016) 506.
  31. Department of Science, Technology, and Environment (DSTE), Action Plan of Clean River Sutlej. Directorate of Environment and Climate Change: Punjab, India, 2019.
  32. A. Sharma, In Ropar, Illegal Mining Takes Toll on Groundwater, (2019). Available at: https://www.tribuneindia. com/news/punjab/in-ropar-illegal-mining-takes-toll-ongroundwater/ 802078.html (Accessed: August 2020).
  33. S. Dutta, The Degrading Water Quality of Sutlej, (2017). Available at: http://swachhindia.ndtv.com/disposal-wastegrossly- pollutingindustries-punjab-threaten-widely-usedrivers- state-12183/ (Accessed: August 2020).
  34. P. Virk, N. Ghosh, K.P. Singh, Some trace elements investigation in groundwater around industrial belt of Ropar Block, Rupnagar District, Punjab, India, J. Ind. Pollut. Control, 26 (2010) 149–154.
  35. Central Water Commission (CWC), Status of Trace and Toxic Metals in Indian Rivers, Ministry of Water Resources, India, 2018.
  36. B. Singh, Regional Geochemical Mapping in Toposheet no 53A/4 district Nawanshahr and Hoshiarpur, Punjab, Geological Survey of India, New Delhi, Report No. NRO-21274, 2002.
  37. A.K. Chaudhry, K. Kamal, M.A. Alam, Mapping of groundwater potential zones using the fuzzy analytic hierarchy process and geospatial technique, Geocarto Int., (2019) 1–22.
  38. A.K. Chaudhry, K. Kamal, M.A. Alam, Groundwater contamination characterization using multivariate statistical analysis and geostatistical method, Water Supply, 19 (2019) 2309–2322.
  39. Central Groundwater Board (CGWB), Aquifer Mapping and Management Plan, Ropar District Punjab, Ministry of Water Resources, India, 2017.
  40. V. Bedekar, E.D. Morway, C.D. Langevin, M. Tonkin, MT3DUSGS Version 1.0.0: Groundwater Solute Transport Simulator for MODFLOW, U.S. Geological Survey, Reston: Virginia, USA, 2016. doi: http://dx.doi.org/10.5066/F75T3HKD.
  41. D.W. Pollock, Semi-analytical computation of path lines for finite-difference models, Groundwater, 26 (1988) 743–750.
  42. D.W. Pollock, User Guide to MODPATH Version 7 – A Particle Tracking Model for MODFLOW, U.S. Geological Survey Open-File Report 2016–1086, 2016, p. 35.
  43. N. Lu, A semianalytical method of path line computation for transient finite-difference groundwater flow models, Water Resour. Res., 30 (1994) 2449–2459.
  44. D.J. Ackerman, J.P. Rousseau, G.W. Rattray, J.C. Fisher, Steady-State and Transient Models of Groundwater Flow and Advective Transport, Eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, U.S. Geological Survey Scientific Investigations Report 2010–5123, Idaho, 2010, p. 220.
  45. Central Water Commission (CWC), Sub-basin study under NWM- Appendix 2 Lower Sutlej Sub Basin, Ministry of Water Resources, India, 2011.
  46. P. Sahu, H.A. Michael, C.I. Voss, P.K. Sikdar, Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply, Hydrol. Sci. J., 58 (2013) 1340–1360.
  47. M. Fioreze, M.A. Mancuso, MODFLOW and MODPATH for hydrodynamic simulation of porous media in horizontal subsurface flow constructed wetlands: a tool for design criteria, Ecol. Eng., 130 (2019) 45–52.
  48. M.C. Hill, Water-Resources Investigations Report 90–4048, In: Preconditioned Conjugate-Gradient 2 (PCG2), A Computer Program for Solving Ground-Water Flow Equations, USGS, 1990, p. 31.
  49. B.F. Des Tombe, M. Bakker, F. Schaars, K.-J. van der Made, Estimating travel time in bank filtration systems from a numerical model based on DTS measurements, Groundwater, 56 (2017) 288–299.
  50. J.E. Doherty, M.N. Fienen, R.J. Hunt, Approaches to Highly Parameterized Inversion: pilot-Point Theory, Guidelines, and Research Directions, U.S. Geological Survey Scientific Investigations Report 2010–5168, 2010, p. 36.
  51. M.J. Knowling, A.D. Werner, D. Herckenrath, Quantifying climate and pumping contributions to aquifer depletion using a highly parameterised groundwater model: Uley South Basin (South Australia), J. Hydrol., 523 (2015) 515–530.
  52. W.W. Woessner, M.P. Anderson, Selecting Calibration Values and Formulating Calibration Targets for Groundwater Flow Simulations, IAHS Publ. 195: Columbus, Ohio, USA, 1992, pp. 199–212.
  53. M.C. Hill, C.R. Tiedeman, Effective Groundwater Model Calibration–With Analysis of Data, Sensitivities, Predictions, and Uncertainty, John Wiley & Sons, Inc., Hoboken, N.J., 2007, p. 455.
  54. C. Zheng, M. Hill, G. Cao, R. Ma, MT3DMS: Model use, calibration, and validation, Trans. ASABE, 55 (2012) 1549–1559.
  55. P.A. Domenico, F. Schwartz, Physical and Chemical Hydrogeology, Wiley, New York, 1998.
  56. G. Drličková, M. Vaculík, P. Matejkovič, A. Lux, Bioavailability and toxicity of arsenic in maize grown in contaminated soils, Bull. Environ. Contam. Toxicol., 91 (2013) 235–239.
  57. S. Sharma, I. Kaur, A.K. Nagpal, Estimation of arsenic, manganese and iron in mustard seeds, maize grains, groundwater and associated human health risks in Ropar wetland, Punjab, India, and its adjoining areas, Environ. Monit. Assess., 190 (2018) 384–399.
  58. J.J. Alava, W.W.L. Cheung, P.S. Ross, U.R. Sumaila, Climate change–contaminant interactions in marine food webs: toward a conceptual framework, Global Change Biol., 23 (2017) 3984–4001.
  59. C. Su, S. Song, Y. Lu, S. Liu, J.P. Giesy, D. Chen, A. Jenkins, A.J. Sweetman, B. Yvette, Potential effects of changes in climate and emissions on distribution and fate of perfluorooctane sulfonate in the Bohai Rim, China, Sci. Total Environ., 613 (20180 352–360.
  60. C.E. Schubert, Groundwater Flow Paths and Travel Time to Three Small Embayments within the Peconic Estuary, Eastern Suffolk County, New York, U.S. Geological Survey Open-File Report 98–4181, 1999.