References
  -  T. Zhang, X.S. Wu, S.M. Shaheen, Q. Zhao, X.J. Liu, J. Rinklebe,
    H.Q. Ren, Ammonium nitrogen recovery from digestate by
    hydrothermal pretreatment followed by activated hydrochar
    sorption, Chem. Eng. J., 379 (2020) 122254, https://doi.org/10.1016/j.cej.2019.122254. 
-  C. Jin, M.F. Yao, H.F. Liu, C.-F.F. Lee, J. Ji, Progress in the
    production and application of n-butanol as a biofuel, Renewable
    Sustainable Energy Rev., 15 (2011) 4080–4106. 
-  D. Mackay, N. de Sieyes, M. Einarson, K. Feris, A. Pappas, I.
    Wood, L. Jacobsen, L. Justice, M. Noske, J. Wilson, C. Adair, K.
    Scow, Impact of ethanol on the natural attenuation of MTBE in
    a normally sulfate-reducing aquifer, Environ. Sci. Technol., 41
    (2007) 2015–2021. 
-  J.T. Moss, A.M. Berkowitz, M.A. Oehlschlaeger, J. Biet, V. Warth,
    P.-A. Glaude, F. Battin-Leclerc, An experimental and kinetic
    modeling study of the oxidation of the four isomers of butanol,
    J. Phys. Chem. A, 112 (2008) 10843–10855. 
-  G. Black, H.J. Curran, S. Pichon, J.M. Simmie, V. Zhukov, Biobutanol:
    combustion properties and detailed chemical kinetic
    model, Combust. Flame, 157 (2010) 363–373. 
-  J.X. Zhang, L.J. Wei, X.J. Man, X. Jiang, Y.J. Zhang, E.J. Hu,
    Z.H. Huang, Experimental and modeling study of n-butanol
    oxidation at high temperature, Energy Fuels, 26 (2012)
    3368–3380. 
-  T.F. Lu, C.K. Law, A directed relation graph method for
    mechanism reduction, Proc. Combust. Inst., 30 (2005) 1333–1341. 
-  P. Pepiot-Desjardins, H. Pitsch, An efficient error-propagationbased
    reduction method for large chemical kinetic mechanisms,
    Combust. Flame, 154 (2008) 67–81. 
-  W.T. Sun, Z. Chen, X.L. Gou, Y.G. Ju, A path flux analysis method
    for the reduction of detailed chemical kinetic mechanisms,
    Combust. Flame, 157 (2010) 1298–1307. 
-  Z.Y. Luo, T.F. Lu, M.J. Maciaszek, S. Som, D.E. Longman,
    A reduced mechanism for high-temperature oxidation of
    biodiesel surrogates, Energy Fuels, 24 (2010) 6283–6293. 
-  T.F. Lu, C.K. Law, Strategies for mechanism reduction for large
    hydrocarbons: n-heptane, Combust. Flame, 154 (2008) 153–163. 
-  S.H. Lam, D.A. Goussis, The CSP method for simplifying
    kinetics, Int. J. Chem. Kinet., 26 (1994) 461–486. 
-  J.-Y. Chen, A general procedure for constructing reduced
    reaction mechanisms with given independent relations,
    Combust. Sci. Technol., 57 (1988) 89–94. 
-  U. Maas, S.B. Pope, Simplifying chemical kinetics: intrinsic lowdimensional
    manifolds in composition space, Combust. Flame,
    88 (1992) 239–264. 
-  Y.M. Fang, Q.D. Wang, F. Wang, X.Y. Li, Reduction of the
    detailed kinetic mechanism for high-temperature combustion
    of n-dodecane, Acta Phys. Chim. Sin., 28 (2012) 2536–2542. 
-  Q.-D. Wang, Y.-M. Fang, F. Wang, X.-Y. Li, Skeletal mechanism
    generation for high-temperature oxidation of kerosene
    surrogates, Combust. Flame, 159 (2012) 91–102. 
-  S.H. Li, J.W. Liu, R. Li, F. Wang, N.X. Tan, X.Y. Li, Automatic
    chemistry mechanism reduction on hydrocarbon fuel
	  combustion, Chem. J. Chin. Univ., 36 (2015) 1576–1587.