References

  1. T. Zhang, X.S. Wu, S.M. Shaheen, Q. Zhao, X.J. Liu, J. Rinklebe, H.Q. Ren, Ammonium nitrogen recovery from digestate by hydrothermal pretreatment followed by activated hydrochar sorption, Chem. Eng. J., 379 (2020) 122254, https://doi.org/10.1016/j.cej.2019.122254.
  2. C. Jin, M.F. Yao, H.F. Liu, C.-F.F. Lee, J. Ji, Progress in the production and application of n-butanol as a biofuel, Renewable Sustainable Energy Rev., 15 (2011) 4080–4106.
  3. D. Mackay, N. de Sieyes, M. Einarson, K. Feris, A. Pappas, I. Wood, L. Jacobsen, L. Justice, M. Noske, J. Wilson, C. Adair, K. Scow, Impact of ethanol on the natural attenuation of MTBE in a normally sulfate-reducing aquifer, Environ. Sci. Technol., 41 (2007) 2015–2021.
  4. J.T. Moss, A.M. Berkowitz, M.A. Oehlschlaeger, J. Biet, V. Warth, P.-A. Glaude, F. Battin-Leclerc, An experimental and kinetic modeling study of the oxidation of the four isomers of butanol, J. Phys. Chem. A, 112 (2008) 10843–10855.
  5. G. Black, H.J. Curran, S. Pichon, J.M. Simmie, V. Zhukov, Biobutanol: combustion properties and detailed chemical kinetic model, Combust. Flame, 157 (2010) 363–373.
  6. J.X. Zhang, L.J. Wei, X.J. Man, X. Jiang, Y.J. Zhang, E.J. Hu, Z.H. Huang, Experimental and modeling study of n-butanol oxidation at high temperature, Energy Fuels, 26 (2012) 3368–3380.
  7. T.F. Lu, C.K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst., 30 (2005) 1333–1341.
  8. P. Pepiot-Desjardins, H. Pitsch, An efficient error-propagationbased reduction method for large chemical kinetic mechanisms, Combust. Flame, 154 (2008) 67–81.
  9. W.T. Sun, Z. Chen, X.L. Gou, Y.G. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combust. Flame, 157 (2010) 1298–1307.
  10. Z.Y. Luo, T.F. Lu, M.J. Maciaszek, S. Som, D.E. Longman, A reduced mechanism for high-temperature oxidation of biodiesel surrogates, Energy Fuels, 24 (2010) 6283–6293.
  11. T.F. Lu, C.K. Law, Strategies for mechanism reduction for large hydrocarbons: n-heptane, Combust. Flame, 154 (2008) 153–163.
  12. S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics, Int. J. Chem. Kinet., 26 (1994) 461–486.
  13. J.-Y. Chen, A general procedure for constructing reduced reaction mechanisms with given independent relations, Combust. Sci. Technol., 57 (1988) 89–94.
  14. U. Maas, S.B. Pope, Simplifying chemical kinetics: intrinsic lowdimensional manifolds in composition space, Combust. Flame, 88 (1992) 239–264.
  15. Y.M. Fang, Q.D. Wang, F. Wang, X.Y. Li, Reduction of the detailed kinetic mechanism for high-temperature combustion of n-dodecane, Acta Phys. Chim. Sin., 28 (2012) 2536–2542.
  16. Q.-D. Wang, Y.-M. Fang, F. Wang, X.-Y. Li, Skeletal mechanism generation for high-temperature oxidation of kerosene surrogates, Combust. Flame, 159 (2012) 91–102.
  17. S.H. Li, J.W. Liu, R. Li, F. Wang, N.X. Tan, X.Y. Li, Automatic chemistry mechanism reduction on hydrocarbon fuel combustion, Chem. J. Chin. Univ., 36 (2015) 1576–1587.