References

  1. T.R.P. Kekuda, K.S. Shobha, R. Onkarappa, Studies on antioxidant and anthelmintic activity of two Streptomyces species isolated from Western Ghat soils of Agumbe, Karnataka, J. Pharm. Res., 3 (2010) 26–29.
  2. D. Coleman, M. Callaham, D. Crossley, Jr., Fundamentals of Soil Ecology, Academic Press, 2017.
  3. C.L. Ventola, The antibiotic resistance crisis: part 1: causes and threats, Pharm. Ther., 40 (2015) 277.
  4. Rate Review Annual Report, United States Department of Health and Human Services, USA, 2013.
  5. National Centre for Biotechnology Information (NCBI), PubChem Database. Available at: htttp://www.ncbi.mlm.nih. gov. (accessed on June 12, 2019).
  6. K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 30 (2013) 2725–2729.
  7. N. Saitou, M. Nei, The neighbour-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4 (1987) 406–425.
  8. A. Wanger, In: R. Schwalbe, L.S. Moore, A.C. Goodwin, Eds., Antimicrobial Susceptibility Testing Protocols, CRC Press, 2007, pp. 53–73.
  9. I. Borodina, J. Siebring, J. Zhang, C.P. Smith, G.V. Keulen, L. Dijkhuizen, J. Nielsen, Antibiotic overproduction in Streptomyces coelicolor A3 (2) mediated by phosphofructokinase deletion, J. Biol. Chem., 283 (2008) 25186–25199.
  10. K.H. Wallhausser, G. Nesemann, P. Prave A. Steigler, Moenomycin, a new antibiotic. I. Fermentation and isolation, Antimicrob. Agents Chemother., 5 (1965) 734–736.
  11. F.L. Weisenborn, J.L. Bouchard, D. Smith, F. Pansy, G. Maestrone, G. Miraglia, E. Meyers, The prasinomycins: antibiotics containing phosphorus, Nature, 213 (1967) 1092.
  12. S.J. Box, M. Cole, G.H. Yeoman, Prasinons A and B: Potent insecticides from Streptomyces prasinus, Appl. Environ. Microbiol., 26 (1973) 699–704.
  13. T. Taguchi, T. Awakawa, Y. Nishihara, M. Kawamura, Y. Ohnishi, K. Ichinose, Bifunctionality of ActIV as a Cyclase-Thioesterase revealed by in vitro reconstitution of actinorhodin biosynthesis in Streptomyces coelicolor A3 (2), ChemBioChem, 18 (2017) 316–323.
  14. S.H.C. Mak, The Molecular Action of Actinorhodin, An Antibiotic Produced by Streptomyces coelicolor, Doctoral dissertation, 2017.
  15. B.A. Rudd, D.A. Hopwood, Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3 (2), Microbiology, 114 (1979) 35–43.
  16. Y. Wang, X. Fang, Y. Cheng, X. Zhang, Manipulation of pH shift to enhance the growth and antibiotic activity of Xenorhabdus nematophila, J. Biomed. Biotechnol., (2011) 1–9.
  17. I.L. Bartek, M.J. Reichlen, R.W. Honaker, R.L. Leistikow, E.T. Clambey, M.S. Scobey, A.B. Hinds, S.E. Born, C.R. Covey, M.J. Schurr, A.J. Lenaerts, M.I. Voskuil, Antibiotic bactericidal activity is countered by maintaining pH homeostasis in Mycobacterium smegmatis, Am. Soc. Microbiol., 1 (2016) e00176–16.
  18. P. Grenni, V. Ancona, A.B. Caracciolo, Ecological effects of antibiotics on natural ecosystems: a review, Microchem. J., 136 (2018) 25–39.
  19. M. Cihák, Z. Kameník, K. Šmídová, N. Bergman, O. Benada, O. Kofronová, K. Petrícková, J. Bobek, Secondary metabolites produced during the germination of Streptomyces coelicolor, Front. Microbiol., 8 (2017) 1–13.
  20. S. Velayudham, K. Murugan, Sequential optimization approach for enhanced production of antimicrobial compound from Streptomyces rochei BKM-4, South Indian J. Biol. Sci., 1 (2015) 72–79.
  21. S.A.E. El-sayed, M.A. Rizk, N. Yokoyama, I. Igarashi, Evaluation of the in vitro and in vivo inhibitory effect of thymoquinone on piroplasm parasites, Parasites Vectors, 12 (2019) 1–10.
  22. A.V.D. Meij, S.F. Worsley, M.I. Hutchings, G.P.V. Wezel, Chemical ecology of antibiotic production by actinomycetes, FEMS Microbiol. Rev., 41 (2017) 392–416.
  23. A. Forero, M. Sánchez, A. Chávez, B. Ruiz, R. Rodríguez-Sanoja, L. Servín-González, S. Sánchez, Possible involvement of the sco2127 gene product in glucose repression of actinorhodin production in Streptomyces coelicolor, Can. J. Microbiol., 58 (2012) 1195–1201.